Skip to main content

Recurrence Quantification Analysis of Cardiovascular System During Cardiopulmonary Resuscitation

  • Conference paper
  • First Online:
Biometric Recognition (CCBR 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13628))

Included in the following conference series:

  • 1346 Accesses

Abstract

Sudden cardiac arrest (CA) is a common cause of death, and cardiopulmonary resuscitation (CPR) can improve the survival rate of CA patients. However, the in-depth study of the pathophysiological mechanism of patients during CPR is limited, and the characterization of the dynamic structure behind the electrical activities of the cardiovascular system from the perspective of nonlinear time series analysis is still lacking. This study used recurrence quantitative analysis (RQA) to quantify changes in the cardiovascular system during CPR and analyze its pathophysiological mechanisms. In artificially constructed porcine CA models, data were divided into four periods: Baseline, ventricular fibrillation (VF), CPR, and Recovery of spontaneous circulation (ROSC). RQA parameters of electrocardiogram (ECG) were analyzed to compare the changes in cardiovascular system dynamics in four periods. The RR, ENTR, and TT of ECG were significantly higher than those of VF and CPR at Baseline and ROSC, indicating that the period and stability of electrical activity of the cardiovascular system were significantly reduced under pathological conditions. The RQA is valid in cardiovascular system analysis in CA patients. This may be useful for future research on the diagnosis and prediction of CA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mozaffarian, D., Benjamin, E.J., Go, A.S., Arnett, D.K.: Heart disease and stroke statistics—2016 update: a report from the American Heart Association. Circ. (New York, N.Y.) 133(4), e38–e360 (2016)

    Google Scholar 

  2. Rea, T.D., Page, R.L.: Community approaches to improve resuscitation after out-of-hospital sudden cardiac arrest. Circ. (New York, N.Y.) 121(9), 1134–1140 (2010)

    Google Scholar 

  3. Perkins, G.D., Jacobs, I.G., Nadkarni, V.M., Berg, R.A.: Cardiac arrest and cardiopulmonary resuscitation outcome reports: update of the utstein resuscitation registry templates for out-of-hospital cardiac arrest a statement for healthcare professionals from a task force of the international liaison committee on resuscitation (American Heart Association, European Resuscitation Council, Australian and New Zealand Council on Resuscitation, Heart and Stroke Foundation of Canada, InterAmerican Heart Foundation, Resuscitation Council of Southern Africa, Resuscitation Council of Asia). Circ. (New York, N.Y.) 132(13), 1286–1300 (2015)

    Google Scholar 

  4. Acharya, U.R., Fujita, H., Sudarshan, V.K., Ghista, D.N.: Automated prediction of sudden cardiac death risk using Kolmogorov complexity and recurrence quantification analysis features extracted from HRV signals, pp. 1110–1115. IEEE (2015)

    Google Scholar 

  5. Chae, M., Gil, H.-W., Cho, N.-J., Lee, H.: Machine learning-based cardiac arrest prediction for early warning system. Math. (Basel) 10(12), 2049 (2022)

    Google Scholar 

  6. Nanayakkara, S., Fogarty, S., Tremeer, M., Ross, K.: Characterising risk of in-hospital mortality following cardiac arrest using machine learning: a retrospective international registry study. PLoS Med. 15(11), e1002709 (2018)

    Article  Google Scholar 

  7. Coult, J., et al.: Continuous assessment of ventricular fibrillation prognostic status during CPR: implications for resuscitation. Resuscitation 179, 152–162 (2022)

    Article  Google Scholar 

  8. Zuo, F., Ding, Y., Dai, C., Wei, L.: Estimating the amplitude spectrum area of ventricular fibrillation during cardiopulmonary resuscitation using only ECG waveform. Ann. Transl. Med. 9(8), 619 (2021)

    Article  Google Scholar 

  9. Gaspari, R., et al.: Echocardiographic pre-pause imaging and identifying the acoustic window during CPR reduces CPR pause time during ACLS – a prospective Cohort Study. Resusc. Plus 6, 100094 (2021)

    Article  Google Scholar 

  10. Luongo, G., Schuler, S., Luik, A., Almeida, T.P.: Non-invasive characterization of atrial flutter mechanisms using recurrence quantification analysis on the ECG: a computational study. IEEE Trans. Biomed. Eng. 68(3), 914–925 (2021)

    Article  Google Scholar 

  11. Clayton, R.H., Murray, A.: Linear and non-linear analysis of the surface electrocardiogram during human ventricular fibrillation shows evidence of order in the underlying mechanism. Med. Biol. Eng. Comput. 37(3), 354–358 (1999)

    Article  Google Scholar 

  12. Wessel, N., Marwan, N., Meyerfeldt, U., Schirdewan, A., Kurths, J.: Recurrence quantification analysis to characterise the heart rate variability before the onset of ventricular tachycardia. In: Crespo, J., Maojo, V., Martin, F. (eds.) ISMDA 2001. LNCS, vol. 2199, pp. 295–301. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45497-7_45

    Chapter  MATH  Google Scholar 

  13. Desai, U., Martis, R.J., Acharya, U.R., Nayak, C.G.: Diagnosis of multiclass tachycardia beats using recurrence quantification analysis and ensemble classifiers. J. Mech. Med. Biol. 16(1), 1640005 (2016)

    Google Scholar 

  14. Yang, H.: Multiscale recurrence quantification analysis of spatial cardiac vectorcardiogram signals. IEEE Trans. Biomed. Eng. 58(2), 339–347 (2011)

    Article  Google Scholar 

  15. Marwan, N., Carmen Romano, M., Thiel, M., Kurths, J.: Recurrence plots for the analysis of complex systems. Phys. Rep. 438(5), 237–329 (2007)

    Article  MathSciNet  Google Scholar 

  16. Li, K., Li, Z.-M.: Cross recurrence quantification analysis of precision grip following peripheral median nerve block. J. Neuroeng. Rehabil. 10(1), 28 (2013)

    Article  Google Scholar 

  17. Tseng, W.C., Wu, M.H., Chen, H.C., Kao, F.Y.: Ventricular fibrillation in a general population–a national database study. Circ. J. Off. J. Jpn. Circ. Soc. 80(11), 2310–2316 (2016)

    Google Scholar 

Download references

Acknowledgments

This study was supported by National Key Research and Development Program (2020YFC1512701), Technical Innovation Guidance Plan of Shandong Province, and Youth Interdisciplinary Scientific Innovation Project of Shandong University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiali Wang , Yuguo Chen or Ke Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, S. et al. (2022). Recurrence Quantification Analysis of Cardiovascular System During Cardiopulmonary Resuscitation. In: Deng, W., et al. Biometric Recognition. CCBR 2022. Lecture Notes in Computer Science, vol 13628. Springer, Cham. https://doi.org/10.1007/978-3-031-20233-9_68

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20233-9_68

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20232-2

  • Online ISBN: 978-3-031-20233-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics