Skip to main content

Multi-view Based Entity Frequency-Aware Graph Neural Network for Temporal Knowledge Graph Link Prediction

  • Conference paper
  • First Online:
Web Information Systems and Applications (WISA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13579))

Included in the following conference series:

Abstract

Inferring missing facts in temporal knowledge graph (TKG) is a fundamental and challenging task. Existing models typically use representation learning to solve this problem. However, most of these models fall short of capturing multi-hop structural information and general preferences for future emerging facts when implementing the representation of target nodes. In addition, most of them use recurrent neural networks to achieve the aggregation of temporal information, which is not only less scalable as the time step increases, but also fails to explicitly address the problem of temporal sparsity of entity distribution in TKG. To address the above problems, we present a MEFGNN (Multi-view based Entity Frequency-aware Graph Neural Network) framework that learns node embedding to capture structural evolution of TKG by combining Multi-view Graph Neural Network (MGNN) and Entity Frequency-aware Attention Network (EFAN). Experiments on three real datasets show that MEFGNN outperforms state-of-the-art methods, our ablation study also validates the effectiveness of MGNN and EFAN.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anonymous: Learning representation over dynamic graph. arXiv preprint arXiv:2106.01678 (2016)

  2. Jin, W., Qu, M., Jin, X., et al.: Recurrent event network: autoregressive structure inferenceover temporal knowledge graphs. arXiv preprint arXiv:1904.05530 (2020)

  3. Zaremba, W., Sutskever, I., Vinyals, O.: Recurrent neural network regularization. arXiv preprint arXiv:1409.2329 (2014)

  4. Bordes, A., Usunier, N., Garcia-Duran, A., et al.: Translating embeddings for modeling multi-relational data. In: Curran Associates Inc., pp. 1–9 (2013)

    Google Scholar 

  5. Wang, Z., Zhang, J., Feng, J., et al.: Knowledge graph embedding by translating on hyperplanes. In: AAAI, pp. 1112–1119 (2014)

    Google Scholar 

  6. Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings for knowledge graph completion. In: AAAI, pp. 2181–2187 (2015)

    Google Scholar 

  7. Li, C., Zhai, R., Zuo, F., Yu, J., Zhang, L.: Mixed multi-channel graph convolution network on complex relation graph. In: Xing, C., Fu, X., Zhang, Y., Zhang, G., Borjigin, C. (eds.) WISA 2021. LNCS, vol. 12999, pp. 497–504. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87571-8_43

    Chapter  Google Scholar 

  8. Yang, B., Yih, W, T., He, X., et al.: Embedding entities and relations for learning and inference in knowledge bases. arXiv preprint arXiv:1412.6575 (2014)

  9. Nickel M., et al.: A three-way model for collective learning on multi-relational data. In: International Conference on Machine Learning, pp. 438–445(2011)

    Google Scholar 

  10. Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embeddings for simple link prediction. In: ICML, pp. 2071–2080 (2016)

    Google Scholar 

  11. Nickel, M., Rosasco, L., Poggio, T.A.: Holographic embeddings of knowledge graphs. In: AAAI, pp. 1955–1961 (2016)

    Google Scholar 

  12. Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2D knowledge graph embeddings. In: AAAI, pp. 1811–1818 (2018)

    Google Scholar 

  13. Seo, Y., Defferrard, M., Vandergheynst, P., Bresson, X.: Structured sequence modeling with graph convolutional recurrent networks. In: Cheng, L., Leung, A.C.S., Ozawa, S. (eds.) ICONIP 2018. LNCS, vol. 11301, pp. 362–373. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04167-0_33

    Chapter  Google Scholar 

  14. Schlichtkrull, M., Kipf, T.N., Bloem, P., van den Berg, R., Titov, I., Welling, M.: Modeling relational data with graph convolutional networks. In: Gangemi, A., et al. (eds.) ESWC 2018. LNCS, vol. 10843, pp. 593–607. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93417-4_38

    Chapter  Google Scholar 

  15. Velikovi, P., et al.: Graph attention networks. arXiv preprint arXiv:1710.10903 (2018)

  16. Jiang, T., et al.: Encoding temporal information for time-aware link prediction. In: EMNLP, pp. 2350–2354 (2016)

    Google Scholar 

  17. Dasgupta, S.S., Ray, S.N., Talukdar, P.P.: HyTE: hyperplane-based temporally aware knowledge graph embedding. In: EMNLP, pp. 2001–2011 (2018)

    Google Scholar 

  18. García-Durán, A., Dumani, S., Niepert, M.: Learning sequence encoders for temporal knowledge graph completion. arXiv preprint arXiv:1809.03202 (2018)

  19. Pareja A., Domeniconi G., Chen J., et al.: EvolveGCN: evolving graph convolutional networks for dynamic graphs. arXiv preprint arXiv:1902.10191 (2019)

  20. Sun Z., Deng Z H., Nie J Y., et al.: RotatE: knowledge graph embedding by relational rotation in complex space. arXiv preprint arXiv:1902.10197 (2019)

  21. Kipf, T, N., Welling, M.: Semi-Supervised Classification with Graph Convolutional Networks. arXiv preprint arXiv:1609.02907 (2016)

  22. Cho K., Merrienboer, B, V., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)

  23. Vaswani, A., Shazeer, N., Parmar, N., et al.: Attention is all you need. arXiv preprint arXiv:1706.03762 (2017)

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of China (62172082, 62072084,62072086), the Fundamental Research Funds for the central Universities (N2116008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derong Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, J., Shen, D., Nie, T., Kou, Y. (2022). Multi-view Based Entity Frequency-Aware Graph Neural Network for Temporal Knowledge Graph Link Prediction. In: Zhao, X., Yang, S., Wang, X., Li, J. (eds) Web Information Systems and Applications. WISA 2022. Lecture Notes in Computer Science, vol 13579. Springer, Cham. https://doi.org/10.1007/978-3-031-20309-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20309-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20308-4

  • Online ISBN: 978-3-031-20309-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics