Skip to main content

Identification of Mango Fruit Maturity Using Robust Industrial Devices and Open-Source Devices Applying Artificial Vision

  • Conference paper
  • First Online:
Advanced Research in Technologies, Information, Innovation and Sustainability (ARTIIS 2022)

Abstract

This article is about the communication between the programmable logic controller and the Raspberry Pi device. Due to technological advances at the Industrial level in recent years, the popularity of this interconnection has increased due to the importance of intelligent systems and the Industrial Internet of Things (IIoT). This project applied intelligent automation through a low-cost device with high efficiency, performance, precision, and monitoring in industrial processes in real-time, in order to identify mango fruit maturity according to its color. The system detects green color for unripe fruit and yellow color for ripe fruit, using computer vision techniques through an intelligent device (Raspberry Pi) and an inexpensive sensor (Pi camera module). The connection of the Siemens s7–1200 PLC with RPi3 through the Python-Snap7 library allows the transfer of information, considering the Profinet industrial communication protocol. RPi3 is used as a control node of the network through the PuTTY application to transfer data to the Siemens s7–1200 PLC, using the SSH protocol for the connection. Therefore, this work achieves real-time monitoring with low latency and high precision between the detection process and the automation of the actuators through the programmable logic controller.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hrbček, J., Bubeníková, E.: Embedded image processing on Raspberry Pi connected to the industrial control system. Multidisciplinary Aspects of Production Engineering 2, pp. 62–71 (2019)

    Google Scholar 

  2. Hatahara da Fonseca, R.H., Rocha Pinto, F.: The importance of the programmable logic controller “PLC” in the industry in the automation process. International Research Journal of Engineering and Technology (IRJET), 6, pp. 280–284 (2019)

    Google Scholar 

  3. Vieira, G., Barbosa, J., Leitão, P., Sakurada, L.: Low-cost industrial controller based on the raspberry pi platform. In: IEEE International Conference on Industrial Technology (ICIT), pp. 292–297 (2020)

    Google Scholar 

  4. Setioko, D.A., Murti, M.A., Sumaryo, S.: Perancangan Sistem Andon Nirkabel Berbasis Internet of Things (IoT) menggunakan PLC dan Raspberry Pi. Seminar Nasional Teknologi Komputer & Sains (SAINTEKS) 1(1), 202–206 (2019)

    Google Scholar 

  5. Ciptaning Anindya, R.S., Haryatmi, E.: Design of 3 phase motor control system using plc with raspberry Pi based on Internet of Things (IoT) system. International Research Journal of Advanced Engineering and Science, vol. 4, pp. 278–283 (2019)

    Google Scholar 

  6. Alexakos, C., Anagnostopoulos, C., Fournaris, A., Kalogeras, A., Koulamas, C.: Production process adaptation to IoT triggered manufacturing resource failure events. In: 2nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), pp. 1–8 (2017)

    Google Scholar 

  7. Upton, E., Halfacree, G.: Raspberry Pi user guide. John Wiley & Sons, ilustrada, p. 312 (2014)

    Google Scholar 

  8. Koniar, D., Hargaš, L., Loncová, Z., Simonová, A., Duchŏn, F., Beňo, P.: Visual system-based object tracking using image segmentation for biomedical applications. Electrical Eng. 99(4), 1349–1366 (2017)

    Google Scholar 

  9. Bubeníková, E., Pirník, R., Holečko, P., Franeková, M.: The ways of streamlining digital image processing algorithms used for detection of lines in transport scenes video recording. IFAC-PapersOnLine 48(4), 174–179 (2015)

    Google Scholar 

  10. Hruboš, M., et al.: Searching for collisions between mobile and environment. Searching for collisions between mobile robot and environment. International J. Advanced Robotic Syst. 13(5), 1–11 (2016)

    Google Scholar 

  11. Fiset, J.-Y.: Human-machine interface design for process control applications. Instrumentation, Systems, and Automation Society (2009)

    Google Scholar 

  12. Patra, S.N., Sarkar, P.P., Nandi, C.S., Koley, C.: Pattern recognization of mango in ripening process with image processing and fuzzy logical system. FaQSaT, pp. 1–7 (2011)

    Google Scholar 

  13. Manage, P., Ambe, V., Gokhale, P., Patil, V., Kulkarni, R.M., Kalburgimath, P.R.: An intelligent text reader based on python. In: 3rd International Conference on Intelligent Sustainable Systems (ICISS), pp. 1–5 (2020)

    Google Scholar 

  14. Howse, J., Media, N.: Training detectors and recognizers in Python and OpenCV. In: IEEE International Symposium on Mixed and Augmented Reality (ISMAR), 1, pp. 1–2, (2014)

    Google Scholar 

  15. Pajankar, A., Kakkar, A.: Raspberry Pi By Example, Packt Publishing Ltd. (2016)

    Google Scholar 

  16. Upon, E., Halfacree, G.: Meet the Raspberry Pi, John Wiley & Sons (2012)

    Google Scholar 

  17. Chuquimarca, L., Asencio, A., Torres, W., Bustos, S., Sánchez, J.: Development of network system for connection PLC to cloud platforms using IIoT. In: International Conference on Advances in Digital Science, pp. 433–443 (2021)

    Google Scholar 

  18. R.P. Foundation, «https://www.raspberrypi.org/software/operating-systems/,» Raspberry Pi Foundation, [En línea]. https://www.raspberrypi.org/software/operating-systems/. [Último acceso: Viernes Junio 2021]

  19. P. S. Foundation, «Python,» Python Software Foundation, [En línea]. https://docs.python.org/3/. [Último acceso: Martes Julio 2021]

  20. Bradsky, G., Kaehler, A.: Learning OpenCV: Computer Vision with the OpenCV Library, O’Reilly Media, Inc (2008)

    Google Scholar 

  21. Mateoiu, A.M., Korodi, A.: OPC-UA based small-scale monitoring and control solution for android devices case study for water treatment plants. In: 4th International Conference on Control, Automation and Robotics (ICCAR), pp. 190–195 (2018)

    Google Scholar 

  22. Forsström, S., Jennehag, U.: A performance and cost evaluation of combining OPC-UA and microsoft azure IoT hub into an industrial internet-of-things system. In: Global Internet of Things Summit (GIoTS), pp. 1–6 (2017)

    Google Scholar 

  23. Sivasangari, A., Deepa, D., Anandhi, T., Ponraj, A., Roobini, M.: Eyeball based cursor movement control. In: International Conference on Communication and Signal Processing (ICCSP), pp. 1116–1119 (2020)

    Google Scholar 

  24. Betancourt, R., Chen, S.: Python for SAS Users, Apress (2019)

    Google Scholar 

  25. Pajankar, A.: Raspberry Pi computer vision programming: design and implement computer vision applications with Raspberry Pi, OpenCV, and Python 3, Packt Publishing Ltd (2020)

    Google Scholar 

  26. Jones, D.: Picamera. Read the Docs, 2013–2014. [En línea]. https://picamera.readthedocs.io/en/release-1.10/api_camera.html. [Último acceso: Jueves Julio 2021]

  27. Mordvintsev, A., Abid, K.: Opencv-Python Tutorials Documentation (2014)

    Google Scholar 

  28. Majare, S., Chougule, S.R.: Skin detection for face recognition based on hsv color space. Int. J. Eng. Sciences Res. Technol. 2(7), 1883–1887 (2013)

    Google Scholar 

  29. Wibowo, F.W., Ardiansyah, M.A.: Low cost real time monitoring system and storing image data using motion detection. Int. J. Applied Eng. Res. 11(8), 5419–5424 (2016)

    Google Scholar 

  30. Molenaar, G., Preeker, S.: python-snap7 Documentation (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Enrique Chuquimarca Jiménez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bustos Gaibor, S.B., Chuquimarca Jiménez, L.E., Sánchez Aquino, J.M., Saldaña Enderica, C.A., Sánchez Espinoza, D.E. (2022). Identification of Mango Fruit Maturity Using Robust Industrial Devices and Open-Source Devices Applying Artificial Vision. In: Guarda, T., Portela, F., Augusto, M.F. (eds) Advanced Research in Technologies, Information, Innovation and Sustainability. ARTIIS 2022. Communications in Computer and Information Science, vol 1675. Springer, Cham. https://doi.org/10.1007/978-3-031-20319-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20319-0_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20318-3

  • Online ISBN: 978-3-031-20319-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics