Skip to main content

Pattern Mining and Classification Techniques for Agriculture and Crop Simulation

  • Conference paper
  • First Online:
Advanced Research in Technologies, Information, Innovation and Sustainability (ARTIIS 2022)

Abstract

Research shows that data analysis and artificial intelligence applied to agriculture in Peru can help manage crop production and mitigate monetary losses. This work presents SmartAgro, a system based on pattern mining and classification techniques that takes information from multiple sources related to the agricultural process to extract knowledge and produce recommendations about the crop growth process. The problem we seek to mitigate with our system is the economic losses generated in Peruvian agriculture caused by poor crop planning. Our results show a high accuracy in regards to type of crop recommendation, and a knowledge base useful for agricultural planning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Crop Guidance Framework (in spanish) - Peruvian Ministry of Agrarian Development and Irrigation (2020) - https://cdn.www.gob.pe/uploads/document/file/1113474/Anexo_-_Marco_Orientador_de_Cultivos.pdf.

  2. 2.

    Problems in Peruvian Agriculture (in spanish) - Peruvian Ministry of Agrarian Development and Irrigation (2015) - https://www.midagri.gob.pe/portal/22-sector-agrario/vision-general/190-problemas-en-la-agricultura-peruana.

  3. 3.

    Precision Ag Definition - International Society of Precision Agriculture (2021) - https://www.ispag.org/about/definition.

  4. 4.

    Data Mining - Encyclopedia Britannica, inc. (2019) - https://www.britannica.com/technology/data-mining.

References

  1. Cambra Baseca, C., Sendra, S., Lloret, J., Tomas, J.: A smart decision system for digital farming. Agronomy 9 (2019)

    Google Scholar 

  2. Gashaw, Y., Liu, F.: Performance evaluation of frequent pattern mining algorithms using web log data for web usage mining. In: CISP-BMEI (2017)

    Google Scholar 

  3. Godara, S., Toshniwal, D.: Sequential pattern mining combined multi-criteria decision-making for farmers’ queries characterization. Comput. Electron. Agric. 173 (2020)

    Google Scholar 

  4. Gümüsçü, A., Tenekeci, M.E., Bilgili, A.V.: Estimation of wheat planting date using machine learning algorithms based on available climate data. Sustain. Comput. Informatics Syst. 28 (2020)

    Google Scholar 

  5. Kuang, Z., Zhou, H., Zhou, D., Zhou, J., Yang, K.: A non-group parallel frequent pattern mining algorithm based on conditional patterns. Frontiers Inf. Technol. Electron. Eng. 20 (2019)

    Google Scholar 

  6. Liu, Y., Bi, J., Fan, Z.: Multi-class sentiment classification: The experimental comparisons of feature selection and machine learning algorithms. Expert Syst. Appl. 80, 323–339 (2017)

    Google Scholar 

  7. Mancipe-Castro, L., Gutiérrez-Carvajal, R.: Prediction of environment variables in precision agriculture using a sparse model as data fusion strategy. Inf. Process. Agric. 9, 17—183 (2022)

    Google Scholar 

  8. Mulla, D., Khosla, R.: Historical Evolution and Recent Advances in Precision Farming, pp. 1–36. CRC Press, Boca Raton (2015)

    Google Scholar 

  9. Netoff, T.I.: Chapter 14 - the ability to predict seizure onset. In: Iaizzo, P.A. (ed.) Engineering in Medicine. Academic Pres, San Diegos (2019)

    Google Scholar 

  10. Ngo, V.M., Kechadi, M.T.: Electronic farming records - a framework for normalising agronomic knowledge discovery. Comput. Electron. Agric. 184,106074 (2021)

    Google Scholar 

  11. Pivoto, D.: Smart farming: concepts, applications, adoption and diffusion in southern Brazil. Ph.D. thesis, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil (2018)

    Google Scholar 

  12. Pérez-Pons, M.E., Plaza-Hernández, M., Alonso, R.S., Parra-Domínguez, J., Prieto, J.: Increasing profitability and monitoring environmental performance: a case study in the agri-food industry through an edge-IoT platform. Sustainability (Switzerland) 13 (2021)

    Google Scholar 

  13. Rajeswari, S., Suthendran, K.: C5.0: advanced decision tree (ADT) classification model for agricultural data analysis on cloud. Comput. Electron. Agric. 156 (2019)

    Google Scholar 

  14. Rupnik, R., Kukar, M., Vracar, P., Kosir, D., Pevec, D., Bosnic, Z.: Agrodss: a decision support system for agriculture and farming. Comput. Electron. Agric. 161, 260–271 (2019)

    Google Scholar 

  15. Saiz-Rubio, V., Rovira-Más, F.: From smart farming towards agriculture 5.0: a review on crop data management. Agronomy 10 (2020)

    Google Scholar 

  16. Suruliandi, A., Ganesan, M., Raja, s.: Crop prediction based on soil and environmental characteristics using feature selection techniques. Math. Comput. Model. Dyn. Syst. 27 (2021)

    Google Scholar 

  17. Ugarte, W., Boizumault, P., Loudni, S., Crémilleux, B., Lepailleur, A.: Mining (soft-) skypatterns using constraint programming. In: EGC (best of volume) (2013)

    Google Scholar 

  18. Ugarte, W., Boizumault, P., Loudni, S., Crémilleux, B., Lepailleur, A.: Soft constraints for pattern mining. J. Intell. Inf. Syst. 44(2) (2015)

    Google Scholar 

  19. Vannozzi, G., Della Croce, U., Starita, A., Benvenuti, F., Cappozzo, A.: Knowledge discovery in databases of biomechanical variables: application to the sit to stand motor task. J. Neuroeng. Rehabil 1 (2004)

    Google Scholar 

  20. Yun, U., Lee, G., Lee, K.: Efficient representative pattern mining based on weight and maximality conditions. Expert Syst. J. Knowl. Eng. 33 (2016)

    Google Scholar 

  21. Zhang, C., Liu, C., Zhang, X., Almpanidis, G.: An up-to-date comparison of state-of-the-art classification algorithms. Expert Syst. Appl. 82 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Willy Ugarte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rozas-Acurio, J., Zavaleta-Salazar, S., Ugarte, W. (2022). Pattern Mining and Classification Techniques for Agriculture and Crop Simulation. In: Guarda, T., Portela, F., Augusto, M.F. (eds) Advanced Research in Technologies, Information, Innovation and Sustainability. ARTIIS 2022. Communications in Computer and Information Science, vol 1675. Springer, Cham. https://doi.org/10.1007/978-3-031-20319-0_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20319-0_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20318-3

  • Online ISBN: 978-3-031-20319-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics