Abstract
Research shows that data analysis and artificial intelligence applied to agriculture in Peru can help manage crop production and mitigate monetary losses. This work presents SmartAgro, a system based on pattern mining and classification techniques that takes information from multiple sources related to the agricultural process to extract knowledge and produce recommendations about the crop growth process. The problem we seek to mitigate with our system is the economic losses generated in Peruvian agriculture caused by poor crop planning. Our results show a high accuracy in regards to type of crop recommendation, and a knowledge base useful for agricultural planning.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Crop Guidance Framework (in spanish) - Peruvian Ministry of Agrarian Development and Irrigation (2020) - https://cdn.www.gob.pe/uploads/document/file/1113474/Anexo_-_Marco_Orientador_de_Cultivos.pdf.
- 2.
Problems in Peruvian Agriculture (in spanish) - Peruvian Ministry of Agrarian Development and Irrigation (2015) - https://www.midagri.gob.pe/portal/22-sector-agrario/vision-general/190-problemas-en-la-agricultura-peruana.
- 3.
Precision Ag Definition - International Society of Precision Agriculture (2021) - https://www.ispag.org/about/definition.
- 4.
Data Mining - Encyclopedia Britannica, inc. (2019) - https://www.britannica.com/technology/data-mining.
References
Cambra Baseca, C., Sendra, S., Lloret, J., Tomas, J.: A smart decision system for digital farming. Agronomy 9 (2019)
Gashaw, Y., Liu, F.: Performance evaluation of frequent pattern mining algorithms using web log data for web usage mining. In: CISP-BMEI (2017)
Godara, S., Toshniwal, D.: Sequential pattern mining combined multi-criteria decision-making for farmers’ queries characterization. Comput. Electron. Agric. 173 (2020)
Gümüsçü, A., Tenekeci, M.E., Bilgili, A.V.: Estimation of wheat planting date using machine learning algorithms based on available climate data. Sustain. Comput. Informatics Syst. 28 (2020)
Kuang, Z., Zhou, H., Zhou, D., Zhou, J., Yang, K.: A non-group parallel frequent pattern mining algorithm based on conditional patterns. Frontiers Inf. Technol. Electron. Eng. 20 (2019)
Liu, Y., Bi, J., Fan, Z.: Multi-class sentiment classification: The experimental comparisons of feature selection and machine learning algorithms. Expert Syst. Appl. 80, 323–339 (2017)
Mancipe-Castro, L., Gutiérrez-Carvajal, R.: Prediction of environment variables in precision agriculture using a sparse model as data fusion strategy. Inf. Process. Agric. 9, 17—183 (2022)
Mulla, D., Khosla, R.: Historical Evolution and Recent Advances in Precision Farming, pp. 1–36. CRC Press, Boca Raton (2015)
Netoff, T.I.: Chapter 14 - the ability to predict seizure onset. In: Iaizzo, P.A. (ed.) Engineering in Medicine. Academic Pres, San Diegos (2019)
Ngo, V.M., Kechadi, M.T.: Electronic farming records - a framework for normalising agronomic knowledge discovery. Comput. Electron. Agric. 184,106074 (2021)
Pivoto, D.: Smart farming: concepts, applications, adoption and diffusion in southern Brazil. Ph.D. thesis, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil (2018)
Pérez-Pons, M.E., Plaza-Hernández, M., Alonso, R.S., Parra-Domínguez, J., Prieto, J.: Increasing profitability and monitoring environmental performance: a case study in the agri-food industry through an edge-IoT platform. Sustainability (Switzerland) 13 (2021)
Rajeswari, S., Suthendran, K.: C5.0: advanced decision tree (ADT) classification model for agricultural data analysis on cloud. Comput. Electron. Agric. 156 (2019)
Rupnik, R., Kukar, M., Vracar, P., Kosir, D., Pevec, D., Bosnic, Z.: Agrodss: a decision support system for agriculture and farming. Comput. Electron. Agric. 161, 260–271 (2019)
Saiz-Rubio, V., Rovira-Más, F.: From smart farming towards agriculture 5.0: a review on crop data management. Agronomy 10 (2020)
Suruliandi, A., Ganesan, M., Raja, s.: Crop prediction based on soil and environmental characteristics using feature selection techniques. Math. Comput. Model. Dyn. Syst. 27 (2021)
Ugarte, W., Boizumault, P., Loudni, S., Crémilleux, B., Lepailleur, A.: Mining (soft-) skypatterns using constraint programming. In: EGC (best of volume) (2013)
Ugarte, W., Boizumault, P., Loudni, S., Crémilleux, B., Lepailleur, A.: Soft constraints for pattern mining. J. Intell. Inf. Syst. 44(2) (2015)
Vannozzi, G., Della Croce, U., Starita, A., Benvenuti, F., Cappozzo, A.: Knowledge discovery in databases of biomechanical variables: application to the sit to stand motor task. J. Neuroeng. Rehabil 1 (2004)
Yun, U., Lee, G., Lee, K.: Efficient representative pattern mining based on weight and maximality conditions. Expert Syst. J. Knowl. Eng. 33 (2016)
Zhang, C., Liu, C., Zhang, X., Almpanidis, G.: An up-to-date comparison of state-of-the-art classification algorithms. Expert Syst. Appl. 82 (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Rozas-Acurio, J., Zavaleta-Salazar, S., Ugarte, W. (2022). Pattern Mining and Classification Techniques for Agriculture and Crop Simulation. In: Guarda, T., Portela, F., Augusto, M.F. (eds) Advanced Research in Technologies, Information, Innovation and Sustainability. ARTIIS 2022. Communications in Computer and Information Science, vol 1675. Springer, Cham. https://doi.org/10.1007/978-3-031-20319-0_33
Download citation
DOI: https://doi.org/10.1007/978-3-031-20319-0_33
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20318-3
Online ISBN: 978-3-031-20319-0
eBook Packages: Computer ScienceComputer Science (R0)