Abstract
In this work, we investigate the problem that maximizes a weakly k-submodular function under the matroid constraint. Different from traditional submodular function maximization, there are k disjoint subsets in k-submodular function optimization, instead of a single set in the submodular maximization. For the weakly k-submodular maximization problem, we provide a greedy algorithm whose approximation ratio is \(\alpha /(1+\alpha )\), where parameter \(0<\alpha \le 1\) is the orthant submodularity ratio. Then we extend to cardinality constraint which maintains the same performance ratio.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Huber, A., Kolmogorov, V.: Towards minimizing \(k\)-submodular functions. In: Proceedings of International Conference on Intelligent Systems and Control (ISCO), pp. 451–462 (2012)
Iwata, S., Tanigawa, S., Yoshida, Y.: Improved approximation algorithms for \(k\)-submodular function maximization. In: Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 404–413 (2016)
Matsuoka, T., Ohsaka, N.: Maximization of monotone \(k\)-submodular functions with bounded curvature and non-\(k\)-submodular functions. In: Proceedings of Asian Conference on Machine Learning (ACML). vol. 157 (2021)
Nguyen, L., Thai, M.T.: Streaming \(k\)-submodular maximization under noise subject to size constraint. In: Proceedings of the Thirty-Seventh International Conference on Machine Learning (ICML), pp. 7338–7347 (2020)
Ohsaka, N., Yoshida, Y.: Monotone \(k\)-submodular function maximization with size constraints. In: Proceedings of Advances in Neural Information Processing Systems (NIPS), pp. 694–702 (2015)
Oshima, H.: Improved randomized algorithm for \(k\)-submodular function maximization. SIAM J. Discrete Math. 35(1), 1–22 (2021)
Qian, C., Shi, J.C., Tang, K., Zhou, Z.H.: Constrained monotone \(k\)-submodular function maximization using multiobjective evolutionary algorithms with theoretical guarantee. IEEE Trans. Evol. Comput. 22, 595–608 (2017)
Sakaue, S.: On maximizing a monotone \(k\)-submodular function subject to a matroid constraint. Discrete Optim. 23, 105–113 (2017)
Singh, A., Guillory, A., Bilmes, J.: On bisubmodular maximization. In: Proceedings of the Fifteenth International Conference on Artificial Intelligence and Statistics (AISTATS), pp. 1055–1063 (2012)
Soma, T.: No-regret algorithms for online \(k\)-submodular maximization. In: Proceedings of the Twenty-Second International Conference on Artificial Intelligence and Statistics (AISTATS), pp. 1205–1214 (2019)
Tang, Z., Wang, C., Chan, H.: On maximizing a monotone \(k\)-submodular function under a knapsack constraint. Oper. Res. Lett. 50, 28–31 (2022)
Ward, J., Živný, S.: Maximizing bisubmodular and \(k\)-submodular functions. In: Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1468–1481 (2014)
Ward, J., Živný, S.: Maximizing \(k\)-submodular functions and beyond. ACM Trans. Algorithms 12(4), 1–26 (2016)
Zheng, L., Chan, H., Loukides, G., Li, M.: Maximizing approximately \(k\)-submodular functions. In: Proceedings of the 2021 SIAM International Conference on Data Mining (SDM), pp. 414–422 (2021)
Acknowledgements
The first author is supported by National Natural Science Foundation of China (Nos. 72192804, 72192800) and the Guozhi Xu Posdoctoral Research Foundation. The second author is supported by National Natural Science Foundation of China (No. 11871081). The fourth author is supported by National Natural Science Foundation of China (Nos. 12131003, 12001025).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Wang, Y., Zhang, D., Zhang, Y., Zhang, Z. (2022). Weakly k-submodular Maximization Under Matroid Constraint. In: Du, DZ., Du, D., Wu, C., Xu, D. (eds) Theory and Applications of Models of Computation. TAMC 2022. Lecture Notes in Computer Science, vol 13571. Springer, Cham. https://doi.org/10.1007/978-3-031-20350-3_32
Download citation
DOI: https://doi.org/10.1007/978-3-031-20350-3_32
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20349-7
Online ISBN: 978-3-031-20350-3
eBook Packages: Computer ScienceComputer Science (R0)