Skip to main content

Weakly k-submodular Maximization Under Matroid Constraint

  • Conference paper
  • First Online:
Theory and Applications of Models of Computation (TAMC 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13571))

  • 612 Accesses

Abstract

In this work, we investigate the problem that maximizes a weakly k-submodular function under the matroid constraint. Different from traditional submodular function maximization, there are k disjoint subsets in k-submodular function optimization, instead of a single set in the submodular maximization. For the weakly k-submodular maximization problem, we provide a greedy algorithm whose approximation ratio is \(\alpha /(1+\alpha )\), where parameter \(0<\alpha \le 1\) is the orthant submodularity ratio. Then we extend to cardinality constraint which maintains the same performance ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Huber, A., Kolmogorov, V.: Towards minimizing \(k\)-submodular functions. In: Proceedings of International Conference on Intelligent Systems and Control (ISCO), pp. 451–462 (2012)

    Google Scholar 

  2. Iwata, S., Tanigawa, S., Yoshida, Y.: Improved approximation algorithms for \(k\)-submodular function maximization. In: Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 404–413 (2016)

    Google Scholar 

  3. Matsuoka, T., Ohsaka, N.: Maximization of monotone \(k\)-submodular functions with bounded curvature and non-\(k\)-submodular functions. In: Proceedings of Asian Conference on Machine Learning (ACML). vol. 157 (2021)

    Google Scholar 

  4. Nguyen, L., Thai, M.T.: Streaming \(k\)-submodular maximization under noise subject to size constraint. In: Proceedings of the Thirty-Seventh International Conference on Machine Learning (ICML), pp. 7338–7347 (2020)

    Google Scholar 

  5. Ohsaka, N., Yoshida, Y.: Monotone \(k\)-submodular function maximization with size constraints. In: Proceedings of Advances in Neural Information Processing Systems (NIPS), pp. 694–702 (2015)

    Google Scholar 

  6. Oshima, H.: Improved randomized algorithm for \(k\)-submodular function maximization. SIAM J. Discrete Math. 35(1), 1–22 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  7. Qian, C., Shi, J.C., Tang, K., Zhou, Z.H.: Constrained monotone \(k\)-submodular function maximization using multiobjective evolutionary algorithms with theoretical guarantee. IEEE Trans. Evol. Comput. 22, 595–608 (2017)

    Article  Google Scholar 

  8. Sakaue, S.: On maximizing a monotone \(k\)-submodular function subject to a matroid constraint. Discrete Optim. 23, 105–113 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Singh, A., Guillory, A., Bilmes, J.: On bisubmodular maximization. In: Proceedings of the Fifteenth International Conference on Artificial Intelligence and Statistics (AISTATS), pp. 1055–1063 (2012)

    Google Scholar 

  10. Soma, T.: No-regret algorithms for online \(k\)-submodular maximization. In: Proceedings of the Twenty-Second International Conference on Artificial Intelligence and Statistics (AISTATS), pp. 1205–1214 (2019)

    Google Scholar 

  11. Tang, Z., Wang, C., Chan, H.: On maximizing a monotone \(k\)-submodular function under a knapsack constraint. Oper. Res. Lett. 50, 28–31 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ward, J., Živný, S.: Maximizing bisubmodular and \(k\)-submodular functions. In: Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1468–1481 (2014)

    Google Scholar 

  13. Ward, J., Živný, S.: Maximizing \(k\)-submodular functions and beyond. ACM Trans. Algorithms 12(4), 1–26 (2016)

    Google Scholar 

  14. Zheng, L., Chan, H., Loukides, G., Li, M.: Maximizing approximately \(k\)-submodular functions. In: Proceedings of the 2021 SIAM International Conference on Data Mining (SDM), pp. 414–422 (2021)

    Google Scholar 

Download references

Acknowledgements

The first author is supported by National Natural Science Foundation of China (Nos. 72192804, 72192800) and the Guozhi Xu Posdoctoral Research Foundation. The second author is supported by National Natural Science Foundation of China (No. 11871081). The fourth author is supported by National Natural Science Foundation of China (Nos. 12131003, 12001025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yapu Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Y., Zhang, D., Zhang, Y., Zhang, Z. (2022). Weakly k-submodular Maximization Under Matroid Constraint. In: Du, DZ., Du, D., Wu, C., Xu, D. (eds) Theory and Applications of Models of Computation. TAMC 2022. Lecture Notes in Computer Science, vol 13571. Springer, Cham. https://doi.org/10.1007/978-3-031-20350-3_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20350-3_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20349-7

  • Online ISBN: 978-3-031-20350-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics