Skip to main content

Context-Aware Human Activity Recognition (CA-HAR) Using Smartphone Built-In Sensors

  • Conference paper
  • First Online:
Advances in Mobile Computing and Multimedia Intelligence (MoMM 2022)

Abstract

Context-awareness has the potential to enhance human activity recognition (HAR) by identifying daily activities such as driving, studying, cooking, or showering. Most existing context-aware HAR approaches that utilize smartphone sensors assume that the phone is placed on certain locations on the body such as trouser pockets, attached to the waist or arm, or held by hand. However, when the smartphone is no longer worn by the person, recognizing human activities becomes a challenging task. This paper proposes a context-aware human activity recognition (CA-HAR) approach to recognize human activities even when the smartphone is no longer placed on the body. The CA-HAR approach performs aggregation of multiple sensor data from the smartphone to recognize human activities by applying deep learning and ripple-down rules (RDR). It uses a context-activity model to build and formulate the RDR rules that consider additional contextual information to deal with the on-body location problem. The paper presents a proof-of-concept implementation of the CA-HAR as an Android app and discusses two types of evaluations that were conducted to validate the performance of CA-HAR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lara, O.D., Labrador, M.A.: A survey on human activity recognition using wearable sensors. IEEE Commun. Surv. Tutor. 15, 1192–1209 (2013). https://doi.org/10.1109/SURV.2012.110112.00192

    Article  Google Scholar 

  2. Incel, O.D., Kose, M., Ersoy, C.: A review and taxonomy of activity recognition on mobile phones. BioNanoScience 3, 145–171 (2013). https://doi.org/10.1007/s12668-013-0088-3

    Article  Google Scholar 

  3. Bricon-Souf, N., Newman, C.R.: Context awareness in health care: a review. Int. J. Med. Inf. 76, 2–12 (2007). https://doi.org/10.1016/j.ijmedinf.2006.01.003

    Article  Google Scholar 

  4. Yurur, O., Liu, C.H., Sheng, Z., et al.: Context-awareness for mobile sensing: a survey and future directions. IEEE Commun. Surv. Tutor. 18, 68–93 (2016). https://doi.org/10.1109/COMST.2014.2381246

    Article  Google Scholar 

  5. Dey, A.K.: Understanding and using context. Pers. Ubiquitous Comput. 5, 4–7 (2001). https://doi.org/10.1007/s007790170019

    Article  Google Scholar 

  6. Morales, J., Akopian, D.: Physical activity recognition by smartphones, a survey. Biocybern. Biomed. Eng. 37, 388–400 (2017). https://doi.org/10.1016/j.bbe.2017.04.004

    Article  Google Scholar 

  7. Cook, D.J., Krishnan, N.C.: Activity Learning: Discovering, Recognizing, and Predicting Human Behavior from Sensor Data. Wiley, Hoboken (2015)

    Book  Google Scholar 

  8. Bao, L., Intille, S.S.: Activity recognition from user-annotated acceleration data. In: Ferscha, A., Mattern, F. (eds.) Pervasive 2004. LNCS, vol. 3001, pp. 1–17. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24646-6_1

    Chapter  Google Scholar 

  9. Martin, H., Bernardos, A.M., Tarrio, P., Casar, J.R.: Enhancing activity recognition by fusing inertial and biometric information. In: 9th International Conference on Information Fusion, pp. 1–8. IEEE (2011)

    Google Scholar 

  10. Hayashi, T., Nishida, M., Kitaoka, N., et al.: Daily activity recognition with large-scaled real-life recording datasets based on deep neural network using multi-modal signals. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E101.A, 199–210 (2018). https://doi.org/10.1587/transfun.E101.A.199

  11. Salakhutdinov, R.: Learning deep generative models. Annu. Rev. Stat. Appl. 2, 361–385 (2015). https://doi.org/10.1146/annurev-statistics-010814-020120

    Article  Google Scholar 

  12. Mohamed, A., Dahl, G.E., Hinton, G.: Acoustic modeling using deep belief networks. IEEE Trans. Audio Speech Lang. Process. 20, 14–22 (2012). https://doi.org/10.1109/TASL.2011.2109382

    Article  Google Scholar 

  13. Wang, Y., Cang, S., Yu, H.: A survey on wearable sensor modality centred human activity recognition in health care. Expert Syst. Appl. 137, 167–190 (2019). https://doi.org/10.1016/j.eswa.2019.04.057

    Article  Google Scholar 

  14. Sousa Lima, W., Souto, E., El-Khatib, K., et al.: Human activity recognition using inertial sensors in a smartphone: an overview. Sensors 19, 3213 (2019). https://doi.org/10.3390/s19143213

    Article  Google Scholar 

  15. Straczkiewicz, M., James, P., Onnela, J.-P.: A systematic review of smartphone-based human activity recognition methods for health research. NPJ Digit. Med. 4, 148 (2021). https://doi.org/10.1038/s41746-021-00514-4

    Article  Google Scholar 

  16. Cao, L., Wang, Y., Zhang, B., et al.: GCHAR: an efficient Group-based Context—aware human activity recognition on smartphone. J. Parallel Distrib. Comput. 118, 67–80 (2018). https://doi.org/10.1016/j.jpdc.2017.05.007

    Article  Google Scholar 

  17. Anguita, D., Ghio, A., Oneto, L., et al.: Human activity recognition on smartphones for mobile context awareness. In: Advances in Neural Information Processing Systems 26: Proceedings of the 2012 Conference, pp. 1–9. Lake Tahoe, Nevada (2012)

    Google Scholar 

  18. Wannenburg, J., Malekian, R.: Physical activity recognition from smartphone accelerometer data for user context awareness sensing. IEEE Trans. Syst. Man Cybern. Syst. 47, 3142–3149 (2017). https://doi.org/10.1109/TSMC.2016.2562509

    Article  Google Scholar 

  19. Nath, S.: ACE: exploiting correlation for energy-efficient and continuous context sensing. In: Proceedings of the 10th International Conference on Mobile Systems, Applications, and Services, pp. 29–42. ACM (2012)

    Google Scholar 

  20. Ouchi, K., Doi, M.: Smartphone-based monitoring system for activities of daily living for elderly people and their relatives etc. In: Proceedings of the 2013 ACM Conference on Pervasive and Ubiquitous Computing Adjunct Publication, Zurich, Switzerland, pp. 103–106. ACM (2013)

    Google Scholar 

  21. Khan, A.M., Tufail, A., Khattak, A.M., Laine, T.H.: Activity recognition on smartphones via sensor-fusion and KDA-based SVMs. Int. J. Distrib. Sens. Netw. 10, 503291 (2014). https://doi.org/10.1155/2014/503291

    Article  Google Scholar 

  22. Villalonga, C., Razzaq, M., Khan, W., et al.: Ontology-based high-level context inference for human behavior identification. Sensors 16, 1617 (2016). https://doi.org/10.3390/s16101617

    Article  Google Scholar 

  23. Radu, V., Tong, C., Bhattacharya, S., et al.: Multimodal deep learning for activity and context recognition. In: Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, vol. 1, pp. 1–27 (2018).https://doi.org/10.1145/3161174

  24. Filios, G., Nikoletseas, S., Pavlopoulou, C., et al.: Hierarchical algorithm for daily activity recognition via smartphone sensors. In: 2015 IEEE 2nd World Forum on Internet of Things (WF-IoT), Milan, Italy, pp. 381–386. IEEE (2015)

    Google Scholar 

  25. Jung, M., Chi, S.: Human activity classification based on sound recognition and residual convolutional neural network. Autom. Constr. 114, 103177 (2020). https://doi.org/10.1016/j.autcon.2020.103177

    Article  Google Scholar 

  26. Wang, W., Liu, A.X., Shahzad, M., et al.: Understanding and modeling of WiFi signal based human activity recognition. In: Proceedings of the 21st Annual International Conference on Mobile Computing and Networking, Paris France, pp. 65–76. ACM (2015)

    Google Scholar 

  27. Compton, P., Jansen, R.: A philosophical basis for knowledge acquisition. Knowl. Acquis. 2, 241–258 (1990). https://doi.org/10.1016/S1042-8143(05)80017-2

    Article  Google Scholar 

  28. Gaines, B.R., Compton, P.: Induction of ripple-down rules applied to modeling large databases. J. Intell. Inf. Syst. 5, 211–228 (1995). https://doi.org/10.1007/BF00962234

    Article  Google Scholar 

  29. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J: Classification and Regression Trees (1983)

    Google Scholar 

  30. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015). https://doi.org/10.1038/nature14539

    Article  Google Scholar 

  31. Hammerla, N.Y., Halloran, S., Ploetz, T.: Deep, Convolutional, and recurrent models for human activity recognition using wearables (2016)

    Google Scholar 

  32. Murad, A., Pyun, J.-Y.: Deep recurrent neural networks for human activity recognition. Sensors 17, 2556 (2017). https://doi.org/10.3390/s17112556

    Article  Google Scholar 

  33. Dua, D., Graff, C: UCI machine learning repository (2017)

    Google Scholar 

  34. Wan, S., Qi, L., Xu, X., Tong, C., Gu, Z.: Deep Learning models for real-time human activity recognition with smartphones. Mob. Netw. Appl. 25(2), 743–755 (2019). https://doi.org/10.1007/s11036-019-01445-x

    Article  Google Scholar 

  35. Bozkurt, F.: A comparative study on classifying human activities using classical machine and deep learning methods. Arab. J. Sci. Eng. 47, 1507–1521 (2021). https://doi.org/10.1007/s13369-021-06008-5

    Article  Google Scholar 

  36. UCI Machine Learning Repository: Human Activity Recognition Using Smartphones Data Set. https://archive.ics.uci.edu/ml/datasets/human+activity+recognition+using+smartphones. Accessed 7 Sept 2021

  37. Qiang, Z., Zhang, Y., Haghighi, P.D., et al: MobileDLSearch: ontology-based mobile platform for effective sharing and reuse of deep learning models. In: 2021 IEEE International Conferences on Internet of Things (iThings) and IEEE Green Computing & Communications (GreenCom) and IEEE Cyber, Physical & Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics (Cybermatics), Melbourne, Australia, pp. 51–58. IEEE (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liufeng Fan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fan, L., Delir Haghighi, P., Zhang, Y., Forkan, A.R.M., Jayaraman, P.P. (2022). Context-Aware Human Activity Recognition (CA-HAR) Using Smartphone Built-In Sensors. In: Delir Haghighi, P., Khalil, I., Kotsis, G. (eds) Advances in Mobile Computing and Multimedia Intelligence. MoMM 2022. Lecture Notes in Computer Science, vol 13634. Springer, Cham. https://doi.org/10.1007/978-3-031-20436-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20436-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20435-7

  • Online ISBN: 978-3-031-20436-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics