Skip to main content

Analyzing 3D Limb Kinematics of Drosophila Melanogaster for Robotic Platform Development

  • Conference paper
  • First Online:
Biomimetic and Biohybrid Systems (Living Machines 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13548))

Included in the following conference series:

Abstract

Recent work in insect-inspired robotics has highlighted the benefits of closely aligning the degrees of freedom (DoF) of a robotic platform with those of the target animal. However, to actualize this approach, the kinematics of the animal must be closely examined and balanced with considerations unique to a robotic counterpart. To inform the development of a robot inspired by Drosophila melanogaster, we collected 3D pose estimation data from the insect and analyzed the kinematics of the middle and hind limb pairs to find combinations of three DoF that best approximate animal motion. For our analysis, we simulated a baseline kinematic leg chain comprised of seven DoF for each frame of the motion capture data. We then fixed certain DoF and found a ‘best fit’ configuration relative to the animal. In these configurations, we analyzed the positional error of each joint’s midpoints, as well as the angle of the leg plane from vertical. We found that using a three DoF combination of CTr elevation/depression, TrF pronation/supination, and FTi flexion/extension, we are able to closely approximate the motions of the insect while balancing necessary robotic platform considerations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Berendes, V., Zill, S.N., Büschges, A., Bockemühl, T.: Speed-dependent interplay between local pattern-generating activity and sensory signals during walking in Drosophila. J. Exp. Biol. 219(23), 3781–3793 (2016)

    Google Scholar 

  2. Bidaye, S.S., et al.: Two brain pathways initiate distinct forward walking programs in Drosophila. Neuron 108, 469–485 (2020)

    Article  Google Scholar 

  3. Billeschou, P., Bijma, N.N., Larsen, L.B., Gorb, S.N., Larsen, J.C., Manoonpong, P.: Framework for developing bio-inspired morphologies for walking robots. Appl. Sci. 10(19), 6986 (2020)

    Article  Google Scholar 

  4. Buschmann, T., Ewald, A., von Twickel, A., Büschges, A.: Controlling legs for locomotion-insights from robotics and neurobiology. Bioinspir. Biomim. 10(4), 41001 (2015)

    Article  Google Scholar 

  5. Enriquez, J., Venkatasubramanian, L., Baek, M., Peterson, M., Aghayeva, U., Mann, R.: Specification of individual adult motor neuron morphologies by combinatorial transcription factor codes. Neuron 86(4), 955–970 (2015)

    Article  Google Scholar 

  6. Frantsevich, L.: Biomechanics of the multisclerite middle coxa in flies (Diptera). Arthropod Struct. Dev. 29(2), 147–161 (2000)

    Article  Google Scholar 

  7. Goldsmith, C.A., Szczecinski, N.S., Quinn, R.D.: Neurodynamic modeling of the fruit fly Drosophila melanogaster. Bioinspir. Biomim. 15, 065003 (2020)

    Article  Google Scholar 

  8. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  9. Hooper, S.L.: Body size and the neural control of movement. Curr. Biol. 22(9), R318–R322 (2012)

    Article  Google Scholar 

  10. Ijspeert, A.J.: Biorobotics: using robots to emulate and investigate agile locomotion. Science 346(6206), 196–203 (2014)

    Article  Google Scholar 

  11. Lobato Ríos, V., et al.: NeuroMechFly, a neuromechanical model of adult Drosophila melanogaster. bioRxiv (2021). https://doi.org/10.1101/2021.04.17.440214

  12. Manoonpong, P., et al.: Insect-inspired robots: bridging biological and artificial systems. Sensors 21(22), 1–44 (2021)

    Article  Google Scholar 

  13. Mathis, A., et al.: DeepLabCut: markerless pose estimation of user-defined body parts with deep learning. Nat. Neurosci. 21(9), 1281–1289 (2018)

    Article  Google Scholar 

  14. Murray, R., Li, Z., Sastry, S.: A Mathematical Introduction to Robotic Manipulation, 1st edn. CRC Press, Boca Raton (2017)

    Book  MATH  Google Scholar 

  15. Sink, H.: Muscle Development in Drosophila, 1st edn. Springer, New York (2006). https://doi.org/10.1007/0-387-32963-3

    Book  Google Scholar 

  16. Soler, C., Daczewska, M., Da Ponte, J.P., Dastugue, B., Jagla, K.: Coordinated development of muscles and tendons of the Drosophila leg. Development 131(24), 6041–6051 (2004)

    Article  Google Scholar 

  17. Zill, S.N., Schmitz, J., Chaudhry, S., Büschges, A.: Force encoding in stick insect legs delineates a reference frame for motor control. J. Neurophysiol. 108(5), 1453–1472 (2012)

    Article  Google Scholar 

  18. Zyhowski, W., Zill, S., Szczecinski, N.: Load feedback from a dynamically scaled robotic model of Carausius Morosus middle leg. In: Verschure, M. (ed.) Living Machines 2022. LNAI, vol. 13548, pp. 128–139. Springer, Cham (2022)

    Google Scholar 

Download references

Acknowledgements

Many thanks to Sasha Zill for his comments and insight while preparing this manuscript. This work was supported by NSF DBI 2015317 as part of the NSF/CIHR/DFG/FRQ/UKRI-MRC Next Generation Networks for Neuroscience Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clarissa A. Goldsmith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Goldsmith, C.A., Haustein, M., Bockemühl, T., Büschges, A., Szczecinski, N.S. (2022). Analyzing 3D Limb Kinematics of Drosophila Melanogaster for Robotic Platform Development. In: Hunt, A., et al. Biomimetic and Biohybrid Systems. Living Machines 2022. Lecture Notes in Computer Science(), vol 13548. Springer, Cham. https://doi.org/10.1007/978-3-031-20470-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20470-8_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20469-2

  • Online ISBN: 978-3-031-20470-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics