Abstract
Living systems can use a single periphery to perform a variety of tasks and adapt to a dynamic environment. This multifunctionality is achieved through the use of neural circuitry that adaptively controls the reconfigurable musculature. Current robotic systems struggle to flexibly adapt to unstructured environments. Through mimicry of the neuromechanical coupling seen in living organisms, robotic systems could potentially achieve greater autonomy. The tractable neuromechanics of the sea slug Aplysia californica’s feeding apparatus, or buccal mass, make it an ideal candidate for applying neuromechanical principles to the control of a soft robot. In this work, a robotic grasper was designed to mimic specific morphology of the Aplysia feeding apparatus. These include the use of soft actuators akin to biological muscle, a deformable grasping surface, and a similar muscular architecture. A previously developed Boolean neural controller was then adapted for the control of this soft robotic system. The robot was capable of qualitatively replicating swallowing behavior by cyclically ingesting a plastic tube. The robot’s normalized translational and rotational kinematics of the odontophore followed profiles observed in vivo despite morphological differences. This brings Aplysia-inspired control in roboto one step closer to multifunctional neural control schema in vivo and in silico. Future additions may improve SLUGBOT’s viability as a neuromechanical research platform.
K. Dai, R. Sukhnandan, M. Bennington—These authors contributed equally to the work.
This work was supported by NSF DBI2015317 as part of the NSF/CIHR/DFG/FRQ/UKRI-MRC Next Generation Networks for Neuroscience Program and by the NSF Research Fellowship Program under Grant No. DGE1745016. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Church, P.J., Lloyd, P.E.: Expression of diverse neuropeptide cotransmitters by identified motor neurons in Aplysia. J. Neurosci. 11(3), 618–625 (1991). https://doi.org/10.1523/jneurosci.11-03-00618.1991
Church, P.J., Lloyd, P.E.: Activity of multiple identified motor neurons recorded intracellularly during evoked feedinglike motor programs in Aplysia. J. Neurophys. 72(4), 1794–1809 (1994). https://doi.org/10.1152/jn.1994.72.4.1794
Cropper, E.C., Jing, J., Weiss, K.R.: The Feeding Network of Aplysia. Oxford University Press, Oxford (2019). https://doi.org/10.1093/oxfordhb/9780190456757.013.19
Dai, K., et al.: Design of a biomimetic tactile sensor for material classification. In: International Conference on Robotics and Automation. IEEE (2022)
Drushel, R.F., Neustadter, D.M., Hurwitz, I., Crago, P.E., Chiel, H.J.: Kinematic models of the buccal mass of Aplysia Californica. J. Exp. Biol. 201(10), 1563–1583 (1998). https://doi.org/10.1242/jeb.201.10.1563
Gill, J.P., Chiel, H.J.: Rapid adaptation to changing mechanical load by ordered recruitment of identified motor neurons. eNeuro 7(3) (2020). https://doi.org/10.1523/ENEURO.0016-20.2020
Harber, E., Schindewolf, E., Webster-Wood, V., Choset, H., Li, L.: A tunable magnet-based tactile sensor framework. In: 2020 IEEE Sensors. IEEE (2020). https://doi.org/10.1109/SENSORS47125.2020.9278634
Kehl, C.E., et al.: Soft-surface grasping: radular opening in Aplysia Californica. J. Exp. Biol. 222(16) (2019). https://doi.org/10.1242/jeb.191254
Lyttle, D.N., Gill, J.P., Shaw, K.M., Thomas, P.J., Chiel, H.J.: Robustness, flexibility, and sensitivity in a multifunctional motor control model. Biol. Cybern. 111(1), 25–47 (2016). https://doi.org/10.1007/s00422-016-0704-8
Mangan, E.V., Kingsley, D.A., Quinn, R.D., Sutton, G.P., Mansour, J.M., Chiel, H.J.: A biologically inspired gripping device. Ind. Robot. (2005). https://doi.org/10.1108/01439910510573291
McManus, J.M., Lu, H., Cullins, M.J., Chiel, H.J.: Differential activation of an identified motor neuron and neuromodulation provide Aplysia’s retractor muscle an additional function. J. Neurophysiol. 112(4), 778–791 (2014). https://doi.org/10.1152/jn.00148.2014
Morton, D.W., Chiel, H.J.: The timing of activity in motor neurons that produce radula movements distinguishes ingestion from rejection in Aplysia. J. Comp. Physiol. 173(5), 519–536 (1993). https://doi.org/10.1007/BF00197761
Morton, D., Chiel, H.: In vivo buccal nerve activity that distinguishes ingestion from rejection can be used to predict behavioral transitions in Aplysia. J. Comp. Physiol. 172(1), 17–32 (1993). https://doi.org/10.1007/BF00214712
Neustadter, D.M., Drushel, R.F., Crago, P.E., Adams, B.W., Chiel, H.J.: A kinematic model of swallowing in Aplysia californica based on radula/odontophore kinematics and in vivo magnetic resonance images. J. Exp. Biol. 205(20), 3177–3206 (2002). https://doi.org/10.1242/jeb.205.20.3177
Neustadter, D.M., Herman, R.L., Drushel, R.F., Chestek, D.W., Chiel, H.J.: The kinematics of multifunctionality: comparisons of biting and swallowing in Aplysia californica. J. Exp. Biol. 210(2), 238–260 (2007). https://doi.org/10.1242/jeb.02654
Nishikawa, K., et al.: Neuromechanics: an integrative approach for understanding motor control. Integr. Comp. Biol. 47(1), 16–54 (2007). https://doi.org/10.1093/icb/icm024
Novakovic, V.A., Sutton, G.P., Neustadter, D.M., Beer, R.D., Chiel, H.J.: Mechanical reconfiguration mediates swallowing and rejection in Aplysia californica. J. Comp. Physiol. 192(8), 857–870 (2006). https://doi.org/10.1007/s00359-006-0124-7
Park, C., et al.: An organosynthetic dynamic heart model with enhanced biomimicry guided by cardiac diffusion tensor imaging. Sci. Robot. 5(38) (2020). https://doi.org/10.1126/scirobotics.aay9106
Pfeifer, R., Bongard, J., Grand, S.: How the Body Shapes the Way We Think: A New View of Intelligence. MIT Press, Cambridge (2006). https://doi.org/10.7551/mitpress/3585.001.0001
Ritzmann, R.E., Quinn, R.D., Fischer, M.S.: Convergent evolution and locomotion through complex terrain by insects, vertebrates and robots. Arthropod Struct. Dev. 33(3), 361–379 (2004). https://doi.org/10.1016/j.asd.2004.05.001
Royakkers, L., van Est, R.: A literature review on new robotics: automation from love to war. Int. J. Soc. Robot. 7(5), 549–570 (2015). https://doi.org/10.1007/s12369-015-0295-x
Sutton, G.P., et al.: Passive hinge forces in the feeding apparatus of Aplysia aid retraction during biting but not during swallowing. J. Comp. Physiol. 190(6), 501–514 (2004). https://doi.org/10.1007/s00359-004-0517-4
Sutton, G.P., Mangan, E.V., Neustadter, D.M., Beer, R.D., Crago, P.E., Chiel, H.J.: Neural control exploits changing mechanical advantage and context dependence to generate different feeding responses in Aplysia. Biol. Cybern. 91(5), 333–345 (2004). https://doi.org/10.1007/s00422-004-0517-z
Valero-Cuevas, F.J., Santello, M.: On neuromechanical approaches for the study of biological and robotic grasp and manipulation. J. Neuroeng. Rehabil. 14(1), 101 (2017). https://doi.org/10.1186/s12984-017-0305-3
Webster-Wood, V.A., Gill, J.P., Thomas, P.J., Chiel, H.J.: Control for multifunctionality: bioinspired control based on feeding in Aplysia californica. Biol. Cybern. 114(6), 557–588 (2020). https://doi.org/10.1007/s00422-020-00851-9
Wirekoh, J., Park, Y.L.: Design of flat pneumatic artificial muscles. Smart Materi. Struct. 26(3), 035009 (2017). https://doi.org/10.1088/1361-665X/aa5496
Wirekoh, J., Valle, L., Pol, N., Park, Y.L.: Sensorized, flat, pneumatic artificial muscle embedded with biomimetic microfluidic sensors for proprioceptive feedback. Soft Robot. 6(6), 768–777 (2019). https://doi.org/10.1089/soro.2018.0110
Yu, S.N., Crago, P.E., Chiel, H.J.: Biomechanical properties and a kinetic simulation model of the smooth muscle I2 in the buccal mass of Aplysia. Biol. Cybern. 81(5–6), 505–513 (1999). https://doi.org/10.1007/s004220050579
Acknowledgment
We thank Jesse Grupper (Harvard University) and Al Turney (KOGANEI International America, Inc.) for help in developing the pneumatic controller.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Dai, K. et al. (2022). SLUGBOT, an Aplysia-Inspired Robotic Grasper for Studying Control. In: Hunt, A., et al. Biomimetic and Biohybrid Systems. Living Machines 2022. Lecture Notes in Computer Science(), vol 13548. Springer, Cham. https://doi.org/10.1007/978-3-031-20470-8_19
Download citation
DOI: https://doi.org/10.1007/978-3-031-20470-8_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20469-2
Online ISBN: 978-3-031-20470-8
eBook Packages: Computer ScienceComputer Science (R0)