Skip to main content

Multi-material FDM 3D Printed Arm with Integrated Pneumatic Actuator

  • Conference paper
  • First Online:
Biomimetic and Biohybrid Systems (Living Machines 2022)

Abstract

One approach to realize more life-like soft robots is the use of pneumatically contracting structures, acting as muscles. Fabricating such systems usually requires manual assembly or molding steps, which extend the time between designing and testing of a new concept. In order to streamline rapid prototyping this study used a multi-material FDM 3D printer for producing a simplified robotic arm with an integrated pneumatic muscle. The actuator working as a pneumatic bicep is printed from thermoplastic polyurethane with a shore hardness of A70, while the arm itself is made of rigid polylactic acid. During the printing process the muscle is, while being printed itself, embedded into the arm by a physical joint, through which the arm assembly can change its angle according to the actuation. In this work, we describe the challenges appearing in such a combined processing of two different materials and how they are addressed. Through its design the resulting soft robotic arm is printed without the need of any support material inside its hollow structures and is ready for testing right after the printing finished. By applying negative pressure to the actuator’s inlet, the arm was able to lift up to 270 g load.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abidi, H., Cianchetti, M.: On intrinsic safety of soft robots. Front Robot AI 4, 6 (2017). https://doi.org/10.3389/frobt.2017.00005

  2. Rus, D., Tolley, M.T.: Design, fabrication and control of soft robots. Nature 521, 467–475 (2015). https://doi.org/10.1038/nature14543

    Article  Google Scholar 

  3. Mazzolai, B., et al.: Roadmap on soft robotics: multifunctionality, adaptability and growth without borders. Multifunct. Mater. 5, 032001 (2022). https://doi.org/10.1088/2399-7532/ac4c95

    Article  Google Scholar 

  4. Whitesides, G.M.: Soft robotics. Angew. Chem. Int. Ed. 57, 4258–4273 (2018). https://doi.org/10.1002/anie.201800907

    Article  Google Scholar 

  5. Yang, D., et al.: Buckling pneumatic linear actuators inspired by muscle. Adv. Mater. Technol. 1, 1600055 (2016). https://doi.org/10.1002/admt.201600055

    Article  Google Scholar 

  6. Conrad, S., Speck, T., Tauber, F.: Multi-material 3D-printer for rapid prototyping of bio-inspired soft robotic elements. In: Vouloutsi, V., Mura, A., Tauber, F., Speck, T., Prescott, T.J., Verschure, P.F.M.J. (eds.) Biomimetic and Biohybrid Systems: 9th International Conference, Living Machines 2020, Freiburg, Germany, July 28–30, 2020, Proceedings, pp. 46–54. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-64313-3_6

    Chapter  Google Scholar 

  7. Conrad, S., Speck, T., Tauber, F.J.: Tool changing 3D printer for rapid prototyping of advanced soft robotic elements. Bioinspir. Biomim. 16, 55010 (2021). https://doi.org/10.1088/1748-3190/ac095a

    Article  Google Scholar 

Download references

Funding

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy – EXC-2193/1-390951807.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Conrad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Conrad, S., Speck, T., Tauber, F.J. (2022). Multi-material FDM 3D Printed Arm with Integrated Pneumatic Actuator. In: Hunt, A., et al. Biomimetic and Biohybrid Systems. Living Machines 2022. Lecture Notes in Computer Science(), vol 13548. Springer, Cham. https://doi.org/10.1007/978-3-031-20470-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20470-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20469-2

  • Online ISBN: 978-3-031-20470-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics