Skip to main content

Direct Assembly and Tuning of Dynamical Neural Networks for Kinematics

  • Conference paper
  • First Online:
Biomimetic and Biohybrid Systems (Living Machines 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13548))

Included in the following conference series:

Abstract

It is unknown precisely how the nervous system of invertebrates combines multiple sensory inputs to calculate more abstract quantities, e.g., combining the angle of multiple leg joints to calculate the position of the foot relative to the body. In this paper, we suggest that non-spiking interneurons (NSIs) in the nervous system could calculate such quantities and construct a neuromechanical model to support the claim. Range fractionated sensory inputs are modeled as multiple integrate-and-fire neurons. The NSI is modeled as a multi-compartment dendritic tree and one large somatic compartment. Each dendritic compartment receives synaptic input from one sensory neuron from the knee and one from the hip. Every dendritic compartment connects to the soma. The model is constructed within the Animatlab 2 software. The neural representation of the system accurately follows the true position of the foot. We also discuss motivation for future research, which includes modeling other hypothetical networks in the insect nervous system and integrating this model into task-level robot control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Buschmann, T., Ewald, A., Twickel, A. von, Büschges, A.: Controlling legs for locomotion - Insights from robotics and neurobiology. Bioinspiration and Biomimetics. 10, (2015). https://doi.org/10.1088/1748-3190/10/4/041001

  2. Safavynia, S.A., Ting, L.H.: Sensorimotor feedback based on task-relevant error robustly predicts temporal recruitment and multidirectional tuning of muscle synergies. J Neurophysiol. 109, 31–45 (2013). https://doi.org/10.1152/jn.00684.2012.-We

    Article  Google Scholar 

  3. Delcomyn, F., Nelson, M.E., Cocatre-Zilgien, J.H.: Sense organs of insect legs and the selection of sensors for agile walking robots. The International Journal of Robotics Research. 15, 113–127 (1996). https://doi.org/10.1177/027836499601500201

    Article  Google Scholar 

  4. Gebehart, C., Schmidt, J., Büschges, A.: Distributed processing of load and movement feedback in the premotor network controlling an insect leg joint. J Neurophysiol. 125, 1800–1813 (2021). https://doi.org/10.1152/jn.00090.2021

    Article  Google Scholar 

  5. Murray, R.M., Li, Z., Sastry, S.S.: A Mathematical Introduction to Robotic Manipulation. CRC Press (2017). https://doi.org/10.1201/9781315136370

    Article  MATH  Google Scholar 

  6. Su, H., Qi, W., Yang, C., Aliverti, A., Ferrigno, G., de Momi, E.: Deep neural network approach in human-like redundancy optimization for anthropomorphic manipulators. IEEE Access. 7, 124207–124216 (2019). https://doi.org/10.1109/ACCESS.2019.2937380

    Article  Google Scholar 

  7. Sandbrink, K.J., Mamidanna, P., Michaelis, C., Mathis, M.W., Bethge, M., Mathis, A.: Task-driven hierarchical deep neural network models of the proprioceptive pathway. https://doi.org/10.1101/2020.05.06.081372

  8. Szczecinski, N.S., Hunt, A.J., Quinn, R.D.: A functional subnetwork approach to designing synthetic nervous systems that control legged robot locomotion. Frontiers in Neurorobotics. 11 (2017). https://doi.org/10.3389/fnbot.2017.00037

  9. Szczecinski, N.S., Quinn, R.D., Hunt, A.J.: Extending the functional subnetwork approach to a generalized linear integrate-and-fire neuron model. Frontiers in Neurorobotics. 14 (2020). https://doi.org/10.3389/fnbot.2020.577804

  10. Cofer, D., Cymbalyuk, G., Reid, J., Zhu, Y., Heitler, W.J., Edwards, D.H.: AnimatLab: A 3D graphics environment for neuromechanical simulations. J. Neurosci. Methods 187, 280–288 (2010). https://doi.org/10.1016/j.jneumeth.2010.01.005

    Article  Google Scholar 

  11. Mamiya, A., Gurung, P., Tuthill, J.C.: Neural coding of leg proprioception in drosophila. Neuron 100, 636-650.e6 (2018). https://doi.org/10.1016/j.neuron.2018.09.009

    Article  Google Scholar 

  12. Ache, J.M., Dürr, V.: A computational model of a descending mechanosensory pathway involved in active tactile sensing. PLoS Computational Biology. 11 (2015). https://doi.org/10.1371/journal.pcbi.1004263

  13. Burrows, M.: Inhibitory Interactions Between Spiking and Nonspiking Local Interneurons in the Locust (1987)

    Google Scholar 

  14. Pearson, K.G., Fourtner, C.R.: Nonspiking Interneurons in Walking System of the Cockroach

    Google Scholar 

  15. Smarandache-Wellmann, C.R.: Arthropod neurons and nervous system (2016). https://doi.org/10.1016/j.cub.2016.07.063

Download references

Acknowledgements

This work was supported by NSF IIS 2113028 as part of the Collaborative Research in Computational Neuroscience Program. This work was also supported by NSF DBI 2015317 as part of the NSF/CIHR/DFG/FRQ/UKRI-MRC Next Generation Networks for Neuroscience Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chloe K. Guie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guie, C.K., Szczecinski, N.S. (2022). Direct Assembly and Tuning of Dynamical Neural Networks for Kinematics. In: Hunt, A., et al. Biomimetic and Biohybrid Systems. Living Machines 2022. Lecture Notes in Computer Science(), vol 13548. Springer, Cham. https://doi.org/10.1007/978-3-031-20470-8_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20470-8_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20469-2

  • Online ISBN: 978-3-031-20470-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics