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Abstract 

The survival of  living organisms is accomplished through regulatory behaviors. In the case 
of  the specialist Namibian sand-diving lizards, those behaviors are modulated not only in 
response to external events in their immediate ecological context but also to satiate their 

internal drives. Both homeostasis and allostasis are endogenous processes responsible for 
maintaining the internal stability of  animal physiological variables, in which allostasis serves 
as a controller coordinating multiple homeostatic subsystems. By performing homeostatic 
and allostatic regulation, the desert-adapted lizard can avoid extreme temperatures while 
being able to acquire limited resources. Moreover, a living organism can make behavioral 

adaptations to cope with chronic stressful situations presented by its unstable environment. 
Yet how multiple internal states are processed and calibrated during those processes has 
not been fully clarified due to how inconsistent “allostasis” is understood and applied in 
numerous researches. We concentrate allostatic control to behavioral adaptation without 
anticipation to highlight that homeostasis and allostasis offer complementary procedures to 

withstand immediate instability. This study integrates homeostatic and allostatic regulatory 
mechanisms based on interoceptive and exteroceptive cues into a simulated mobile robot 
replicating the lizard’s sand-diving and foraging behaviors. To implement drive competition 
and conflict resolution in the animal’s brain, we propose a computational model based on 
the interaction between the brainstem’s medial Reticular Formation and the hypothalamus. 

Such a bio-inspired system is capable of  action selection, and thus, can generate complex 
behaviors upon stimuli received from both the environment and the agent's internal states. 
Finally, we evaluate the robot’s performance under capricious environmental settings. Our 
results support a dynamic, reconfigurable hierarchical organization of  internal drives as an 
essential feature of  sufficient regulation that ensures a healthier constitution. 

Keywords: Behavioral Regulation, Allostasis, Homeostasis, Stress, Allostatic Load, Action 
Selection, Reticular Formation, Cognitive Architecture, Biomimetic Robotics. 
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1. Introduction 

1.1. Problem statement 

The natural behavior of  animals reflects the adaptive coupling between the organism and 

its ecological niche. Their complex behavioral repertoires go beyond simple reflexes of  the 
opportunities and threats that the environment provides, but they are also not pure results 
of  learning and evolution. More precisely, a living organism’s physical body has the wisdom 
to constantly perform behavioral adjustments to handle internal disturbances that external 
environmental perturbations would otherwise cause. 

According to Hull (1943), drive reduction is the primary force behind behaviors [1]. Drives 
are endogenous and instinctual urges that arise due to physiological or psychological needs 
of  biological beings. Behavioral regulation in animals is one of  many ways to reduce those 
impulses. Various recent studies in regulatory behaviors [2, 3] proposed homeostasis as the 
primary assessment to classify motivational drives. Homeostasis refers to the “steady state” 

of  internal physiological systems that are essential for organismic viability [4]. Evidence of  
homeostasis can be observed by analyzing the diurnal behaviors of  the sand-diving lizards 
inhabiting the Namib desert in Southern Africa [5, 6]. Under extreme temperatures in the 
desert, the lizards engage in complex self-regulatory behaviors such as diving beneath or 
rising above the sand surface to maintain a desired body heat of  30ºC. Besides temperature, 

numerous homeostatic systems operate simultaneously to control other needs (e.g., water, 
food, sex, or anti-predation). At a meta level, evolved biological systems are driven to move 
between homeostatic systems and maintain a dynamic equilibrium of  multiple needs being 
fulfilled. Allostasis serves this purpose by counteracting fluctuations through changes [7].  

Sterling and Eyer (1988) originally coined the term “allostasis” and elaborated its beneficial 

roles in [7]. One is that it permits an adequate matching of  resources to demands. This is 
done through a continuous re-evaluation of  needs and a regular adjustment of  permissible 
homeostatic thresholds in order to generate motivational tendencies that are not too high 
or too low for whatever is happening outside the body [7]. The second claimed advantage 
of  allostasis is its capacity to anticipate upcoming needs and make necessary responses in 

advance. Under this allostatic regime, the body benefits from the animal’s capacity to learn 
from experience [7]. Several succeeding studies [2, 3, 8, 9, 10, 11] considered an allostatic 
controller that supervises and orchestrates multiple homeostatic subsystems. However, they 
interpreted the characteristic features of  allostatic control inconsistently. In [8, 9], allostasis 
adjusts the favorable values (i.e., the setpoints) of  individual homeostatic subsystems, plus 

integrates and weights their outputs to better regulate multi-perspective behaviors. Lee et 
al. [10] likewise referred to allostasis as changing setpoints for homeostatic recovery. Those 
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alterations are made in response to chronic stressful events or poorly regulated responses 
without any clue to inform the animal that an external fluctuation is about to come. On the 
other hand, allostasis is proposed by [11] to be the prospective preventions in which the 
brain consolidates the stored “prior knowledge” and incoming sensory inputs to anticipate 

what resources will most likely be needed, and thus, minimizes upcoming discrepancies 
between the currently sensed and desired values of  homeostatic subsystems. Nevertheless, 
those compensatory adjustments require frequent updates on the intensity of  each drive 
(i.e., the difference between the actual and desired values of  the corresponding homeostatic 
system). Vouloutsi et al. [2] additionally suggested that the relative importance (i.e., the 

priority levels) of  motivational drives play an equally important role as their intensities in 
allostatic control. Moreover, the priority levels of  drives could be ordered hierarchically in a 
way that moderately matches Maslow’s pyramid [12], where higher needs would only be 
considered if  those constituting the base are fulfilled.  

Due to how ambiguous the term “allostasis” is understood and applied in those various 

researches, the calibration and coordination of  multiple motivational drives remain unclear. 
Therefore, it appears necessary for us to review the state of  the art in allostatic control and 
articulate a more concrete definition of  allostasis. Our proposal for the terminology would 
be: whereas homeostasis indicates the local, primitive feedback loops involving autonomic 
reflexes that resist physiological disturbances, allostasis ameliorates internal perturbations 

through an integrative, hierarchical orchestration of  multiple homeostatic subsystems being 
dynamically reorganized. In this study, we concentrate the scope of  allostasis to adaptation 
without any predictive regulation to highlight that homeostasis and allostasis indeed offer 
complementary procedures for the mutual goal of  coping with immediate instability. 

This study follows a synthetic methodology of  convergent validation, starting with fine-

tune a model of  homeostatic and allostatic control proposed by [13]. Our main objective is 
to enhance the efficiency of  behavioral regulation by empowering the control system with 
a reconfigurable hierarchy of  motivational drives. The result will be subsequently integrated 
into a mobile robot capturing essential properties of  the observed behaviors as navigation 
profiles. To build an agent which robustly operates in a complex environment, an efficient 

strategy is to reverse-engineer the existing biological structures that have already solved the 
problem. The hypothalamus is known to be the convergent center of  interoceptive signals, 
regulating many effectors of  homeostasis [14]. We look for a neural substrate for behavior 
selection that interacts with both ascending hypothalamic and descending reticulospinal 
systems, and the brainstem’s medial Reticular Formation seems to be the best candidate 

[15, 16]. The medial Reticular Formation and its interaction with the hypothalamus serve as 
the starting point for designing our proposed mechanism of  action selection [17, 18].  
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Our proof  of  concept will be examined entirely through robotic simulations. We expect 
the mobile robot to replicate the sand diving and foraging behaviors within an environment 
simulating the desert lizard’s ecosystem. Thus, we can prove the hypotheses regarding the 
efficiency of  our approach on how animal behaviors are regulated. If  the simulated robot 

performs poorly, then our model is likely to be incorrect. 

1.2.  State of  the art 

1.2.1. Homeostatic and allostatic principles 

In his drive reduction theory, Hull (1943) defined the term “drive” as an unbalanced state 
that governs and affects behaviors. Primary drives are often innate and pertain to the basic 
needs of  animals, such as warmth, hydration, nutrition, self-preservation, and reproduction. 
Under aversive (e.g., excessive temperature) and pleasurable (e.g., food or sex) conditions, 
the organism creates tensions or arousals that need to be reduced. Animals are motivated 

to carry out regulatory behaviors that lead to the reduction of  those drives [1].  

Hull developed his theory around the concept of  homeostasis which refers to the optimal 
processes used to reach and maintain internal states at fairly constant and stable levels [4]. 
The steadiness of  internal states is reflected through the constancy of  “le milieu intérieur”, 
i.e., the extracellular fluid environment that envelops the cell [5]. The goal of  homeostatic 

control is to maintain the balance and consistency of  this interior milieu by strictly ensuring 
essential physical and chemical conditions (e.g., body temperature, pH, oxygen tension, or 
glucose level) being kept within viable homeostatic ranges. In this balanced state, certain 
motivational drives encounter appropriate stimuli that satisfy their needs. Both the absence 
and excessive presence of  a stimulus can lead to an unbalanced state of  the corresponding 

internal system, and thus, create a tendency to take a countervailing action. This capacity to 
cancel fluctuations out with regulatory responses helps the living organism adapt to its 
unique habitat. An enlightening example of  the Namib desert lizard can be found in [6]. In 
general, reptiles lack an internal mechanism of  metabolic heat production as endotherms, 
which results in their reliance on external heat [5]. Hence, they perform thermoregulation 

exclusively through interactions with the environment. When the surface temperature is at 
30ºC, the lizard emerges from the sand and presses its ventral surface against the substrate, 
having its body heat restored. Once the surface temperature starts to increase, it performs a 
“thermal dance” – lifting its feet off  the hot sand – in order to prevent the limbs from 
burning.  Should it get extremely hot (i.e., 40–50ºC), the animal digs into the sand dune 

where temperatures are cooler [6]. In terms of  homeostasis, the ectothermic lizard needs to 
sustain a desired temperature value of  30ºC. Lower or higher temperatures motivate the 
animal to behave in such a way that brings the actual body heat back to 30ºC. However, 
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homeostasis cannot be the only regulatory mechanism since the premise of  it does not 
precisely address the primary goals of  animal behavioral regulation. Regulatory behaviors 
are meant to promote survival and reproduction. Sustaining the constancy of  any of  the 
distinctive homeostatic systems cannot be the ultimate concern of  the sand-diving lizard. 

Under the harsh living conditions in the desert, the animal needs to develop an optimal 
strategy to not only escape from thermal stress but also survive far from obvious resources 
[5, 6]. This is where the notion of  allostasis came into use. Instead of  preserving constancy 
inside closed homeostatic loops, allostatic control achieves global stability by changing the 
dynamics and priorities of  different homeostatic subsystems pertinently to environmental 

changes [7, 8]. As a result, multiple motivational drives are satiated, taking into account the 
consequences of  actions. In the case of  the sand-diving lizards, being beneath the sand 
precludes the acquisition of  food and water. The organism is able to determine whether it 
should prioritize hydration over preserving its body heat, or how much danger should it 
tolerate while searching for resources. When the lizard is replete with water content, it will 

spend less time on the surface of  the sand, prioritizing self-protection. On the contrary, if  
the desert lizard is profoundly thirsty, it will take a higher than normal risk of  predation by 
venturing onto the surface, avoiding an eventual death [6]. 

With these understandings of  biological concepts, we consult several studies that have been 
conducted following the same methodology of  a biomimetic agent-based architecture built 

upon computational processes. An inspiring system of  how a motivational drive interacts 
with and is expressed through behavior is shown in [19]. Their framework consists of  a 
motivation system (including the agent’s internal drives), a behavior system (containing a 
set of  regulatory behaviors), a perceptual system (extracting salient external stimuli), and a 
motor system (implementing motor skills). Each motivational drive is modeled as a specific 

transducer process that is active when its activation level exceeds a threshold and expresses 
itself  through a regulatory behavior. All drives and behaviors are organized in such a way 
that the agent tries to achieve homeostatic balance and preferentially passes activation to 
some behaviors over others. In this respect, [2] developed a similar yet more progressive 
architecture. Their chosen drive set was different from ours since they explored behavioral 

modulation in the context of  human-robot social interaction. Still, the most important 
improvement of  [2] compared to [19] is that a certain drive is not mapped to a specific 
behavior on a one-to-one basis. Rather, each drive is managed by a homeostatic controller 
that defines its ideal range and evaluates whether its actual value is within that range. In 
addition, the authors proposed in [3] that the homeostatic controller then classifies the 

motivational drive into one of  the following states: “under homeostasis”, “homeostasis”, 
and “over homeostasis”. Both “under homeostasis” and “over homeostasis” states trigger 
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behavioral regulation. Figure 1 depicts an unspecified homeostatic system with maximum 
and minimum bounds. The system is classified as balanced while the actual value (aV) at a 
given time stays within the predefined desired value (dV) range. The agent only exhibits the 
modulation when the aV goes below the minimum limit or above the maximum limit. 

Figure 1: Homeostatic control. Keeps the actual value (aV) of  the controlled parameter within the desired 

value (dV) range. The dV range is determined by the homeostatic limits. Reproduced from [2, 3, 13].  

On top of  the homeostatic assessment of  each drive, there is an allostatic controller which 

constantly monitors the intensity of  motivational tendencies and their levels of  priority [2]. 
The ultimate goal of  allostasis is to inform the animal about which need to fulfill foremost. 
Therefore, a more complicated yet more effective regulation system of  flexible trade-offs is 
empowered. We modify the control mechanism described in [2, 3] into a new one suitable 
for our research. Key components are adapted to animal’s biological behaviors, following 

suggestions from [13]. Figure 2 demonstrates how an organism evaluates its internal states 
based on the principles of  intensity and priority. Four typical homeostatic subsystems (anti-
predation, thermoregulation, thirst, and hunger) are arranged from left to right according 
to their priority levels. The dV ranges of  different homeostatic subsystems also differ. The 
intensity of  the tendency to bring aV back to balance is calculated by the distance from the 

aV (being outside the dV range) to the closest homeostatic boundary. Light and dark blue 
dashed lines in the thirst homeostatic subsystem represent different aVs, with the dark blue 
line (2) indicating more intense demand than the light blue one (1). The “hide” behavior is 
meant to satisfy the anti-predation drive, and the “explore” behavior fulfills the thirst drive. 
When anti-predation and thirst drives contradict each other, the intensity of  anti-predation 

need will be compared to the intensity of  thirst. In the first case demonstrated by the light 
blue dashed line (1), both tendencies are equally urgent. As a result, the action selected will 
be based on the priority principle which favors safety from predators over hydration. The 
animal will hide beneath the sand and silence its slight need for water. However, if  the 
thirst drive with lower priority has a higher intensity, the living organism will prioritize the 

satiation of  thirst since its survival is fatally endangered. That being so, in the second case 
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demonstrated by the dark blue line (2), the tendency for water acquisition will suppress the 
need for self-protection, even in the presence of  predators. 

Figure 2: Detailed diagram of  behavior selection. Internal drives are evaluated by means of  intensity and 

priority. Case (1) prioritizes anti-predation over thirst, while case (2) prioritizes thirst over anti-predation. 

Reproduced from [2, 3, 13]. 

While the way we estimate the intensity of  a certain internal drive seems to be apparent, 
how the allostatic controller determines the level of  priority remains unclear. We support 

the idea from [2] that the priority levels of  different motivational drives will likely form a 
pyramid approximating Maslow's hierarchy of  needs [12]. The most enduring concept of  
Maslow is probably the hierarchical arrangement in which some drives take precedence 
over others. Maslow’s proposal that the fundamental needs are independent and multiple is 
aligned with the existence of  numerous homeostatic subsystems – determined by different 

dynamics, stimuli, and neural substrates. Even though the basic foundations of  the classic 
pyramid are worth preserving, it was specifically built to classify the drives and motives of  
humans, not those of  animals. Maslow himself  extended the homeostatic principle only to 
all preceding four levels due to their deficit nature [12]. On the contrary, self-actualization 
needs in humans do not involve homeostasis since they are likely to be nourished once 

engaged. Hence, this layer should not be considered in studies regarding homeostasis and 
animal behavior. A revised hierarchy for animal’s needs was introduced in [20], integrating 
theoretical and empirical evidence at the interface of  evolutionary biology. We incorporate 
this renovated hierarchy (Figure 3) in our model, plus propose two main modifications. 
First, in Maslow’s classic pyramid, all physiological drives are depicted as equal in terms of  

preference, while in reality, they are not. For example, excretion is more important than 
water consumption, and thermoregulatory needs cannot oppose the demand for oxygen. 
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Furthermore, among immediate metabolic drives, maintaining body temperature outwits 
the urges for water and food [21]. Hence, we propose that each layer depicted in Figure 3 
should contain needs with different priority values. Second, contemporary theorists pointed 
out that fundamental drives are not intrinsic but goal-oriented, with their dynamics being 

calibrated in response to situational threats and opportunities [20]. Thus, the layers of  the 
hierarchy used in our study should be reconfigured corresponding to immediate external 
triggers. This last point evokes the idea of  an adaptable hierarchical organization of  needs 
that could serve as a valuable extension to the previous works in allostatic control. 

Figure 3: The animal hierarchy of  needs. The activation of  a drive-based goal will be triggered whenever 

relevant environmental cues are salient. Reproduced from [20]. 

Despite various successful models exploiting concepts of  allostasis, there are only a few 

benchmarks for such biomimetic control systems. The most notable one might be the work 
by Sanchez-Fibla et al. [8, 9]. They implemented homeostatic and allostatic principles in a 
mobile robot imitating rat behaviors, making [8, 9] exceptionally similar to our approach. 
Behaviors of  real rodents chosen as their project’s benchmarks were recorded through an 
open field test and include free exploration, homing, reward localization [8], plus advanced 

capacities such as path finding [9]. The authors assessed a simulated robot and a physical 
one steering in different experimental arenas. The model was validated by comparing the 
agents’ outputs with real rat behaviors. Drive-based self-regulation was decomposed into a 
minimal set of  homeostatic subsystems approximating the observed behaviors. Those 
subsystems are depicted as gradients, and the desired values portray favorable locations in 

such landscapes. For instance, the “arousal” gradient has a maximum value in the center 
that drops to zero towards the experimental boundaries, indirectly measuring arousal levels 
as distances. The “security” gradient fixes the desired value at a preferred corner, and the 
“cue” gradient changes itself  dynamically. Regarding allostasis, Sanchez-Fibla et al. argued 
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that setpoints of  the homeostatic gradients can be adjusted through a probability switching 
mechanism to achieve stability at a behavioral meta-level [8]. Besides adjusting the desired 
values, allostatic control is responsible for bringing the agent closer to the desired location 
through the integration of  the gradient-dependent information and its mappings onto the 

motor system. The motor contribution of  a given gradient to navigation is influenced by 
the difference between the actual (aV) and desired (dV) values and a fixed weighting factor 
k that is different for every gradient. Such implementation is relevant to how we previously 
established the principles of  intensity and priority. Sanchez-Fibla et al. also discussed how 
allostatic control could be applied to perform complex path planning tasks. The resulting 

regulation was reflected not only in the internal stability that the robot achieved but also in 
its ability to form an optimal path toward a target [9].  

1.2.2. Allostatic load and stress response 

Although Sanchez-Fibla's work is chosen as the valuable benchmark for our study, we see 

some areas where the implemented model can be extended. Replicating the model in [8, 9] 
together with overcoming its limitations will certainly support the development of  a more 
comprehensive and beneficial architecture. A potential extension of  Sanchez-Fibla's model 
could be the generalization of  allostatic control from simple corrections of  already-sensed 
mismatches between the desired and actual homeostatic values to adaptations that inhibit 

those erroneous outcomes from growing dangerously large, especially within a stochastic 
environment with limited observability of  resources.  

It is worth clarifying whether allostasis necessarily implies forecasting future needs through 
learning and preparing to fulfill needs before they arise, and to what extent can allostasis 
provide adaptations. From a control-theoretic perspective, the homeostatic objective is to 

minimize the discrepancy between favorable and actual interoceptive sensations [22]. This 
error signal is usually referred to as “free energy” in studies [22, 23] adopting the notion of  
interoceptive inference. In interoceptive inference processes (including homeostasis and 
allostasis), the living systems encode representations of  the body’s physiological states and 
provide vital information about how well the living body maintains its inner environment's 

steadiness. The main goals of  interoceptive inference include minimizing error signals in 
terms of  both magnitude and frequency, and then utilizing those errors in reducing future 
ones [22]. The review in [23] categorized current approaches on minimizing “free energy” 
into three broad classes: behavioral, teleological, and diachronic allostasis. While the two 
latter ones shift the focus to a broader perspective, emphasizing beforehand predictions of  

future errors and higher-level implementation of  flexible action policies, the “behavioral” 
approach strikingly retains allostasis as a reactive mechanism equivalent to the automatic 
corrective responses orchestrated by homeostatic systems. On this account, homeostasis is 
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a group of  first-order negative feedback loops involving autonomic regulation constituted 
by the dynamic interplay of  each homeostatic module’s inputs and outputs. If  homeostatic 
control fails to stabilize essential physiological variables within viable boundaries, allostatic 
control intervenes to reconfigure the homeostatic systems’ dynamics and rankings without 

any anticipatory behavior in the service of  any particular homeostatic module [23]. Thus, 
although this second-order arrangement lacks the capacity to predict and offset deviations 
before they occur, it still can offer adaptations to the long-term consequences caused by 
unresolved internal perturbations. Observations of  such responses found in nature include: 
seeking shelter before night falls, hoarding before winter, longer sleep cycles, or elevated 

gluconeogenesis [24]. Indeed, allostasis is proposed by many studies [24, 25] to be the 
underlying process in which animals carry out the information integration and processing 
of  physiological conditions, preceding experiences, and habitat configurations in order to 
avoid damaging situations. Unpleasant experiences – either derived from predictable (e.g., 
seasonal shortage of  resources) or unpredictable changes (e.g., natural disasters) in the 

animal’s habitat – are perceived as threats to survival, cause stresses, and significantly force 
behavioral changes. Thus, living organisms can adapt to capricious environments [25].  

The aforementioned observations embraced allostasis as a promising concept for studying 
complex relations between behavior, stress, and allostatic load in coping strategies with the 
hazards presented by uncertain environmental conditions [24]. Stresses are stimuli inducing 

changes in homeostasis (i.e., allostasis) of  internal organizations constituting the autonomic 
nervous system (e.g., blood pressure), metabolic hormones (e.g., cortisol, insulin), and pro/
anti-inflammatory cytokines [10]. The cumulation of  slight yet repetitive stresses can lead 
to long-standing consequences as they constantly and excessively inhibit the homeostatic 
recovery processes. When increased need generates a homeostatic “error”, the first-order 

feedback mechanism works on minimizing that error. However, the desirable stimuli might 
not be available by then, and the time needed for correction might be exhaustively long. 
Allostatic load  is thus the accumulating physiological burden of  adaptation to prolonged 
stress. Behavioral responses modulated by allostatic load are initiated by a stress factor, 
sustained for an appropriate time interval, and then shut off  when the stress is terminated 

[10]. Several conditions might lead to allostatic loads, such as gradually elevated stress, the 
lack of  adaptation to frequent stress factors, elongated responses after a threat is past, and 
inadequate responses that trigger unnecessary compensations in other behaviors [26].  

However, how allostatic load is computed is still poorly elaborated across the literature. We 
start with the premise that the most appropriate technique to minimize homeostatic errors 

could be to modify interoceptive parameters so that they correspond with the perceived 
stress level of  environmental and physiological conditions [22]. According to Lee et al. [10], 
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if  the frustrating situation persists, the living system might require the relevant homeostatic 
systems to update their setpoints (i.e., desired values) for future adaptation, and allostatic 
load is defined as the difference between the newly defined and previous setpoints. Such a 
dynamic adjustment of  setpoints was implemented by Sanchez-Fibla et al. in [8, 9] through 

a probability switching mechanism, and it approximately explains adaptation in the case of  
several homeostatic modules interacting with each other.  

Figure 4: Dynamic configuration of  the weighting factor. Blue and green solid lines represents related 

stress stimuli. Chronic stress increases the relative priority and motivates the organism towards fulfilling the 

need (red dashed lines). When the need is satisfied, the homeostatic subsystem is relaxed (blue dashed lines) 

and the relative priority decreases. Reproduced from [10, 11, 26]. 

Even so, an absolute reconfiguration from an initial desired value to an “allostatic” one 
leaves us in doubt. We look for an alternative methodology to compute allostatic load that 
is consistent with its cumulative nature [26] and a cyclic regulatory fashion of  “arousal” and 

“relaxation” as described in [11]. We additionally propose that allostatic load is not only the 
label for the discrepancy between the initial and “allostatic” values but also the mechanism 
which results in that adjustment. Allostatic load should be calculated in such a way that 
requires the continuous storing of  the growing stress for each stimulus (e.g. temperature, 
food, or water). In this respect, whenever homeostatic subsystems fail to resolve internal 

perturbations caused by stress, the allostatic load value increases. The organism is driven 
towards fulfilling the need, and when the homeostatic subsystem recovers, the allostatic 
load value decreases [11]. Furthermore, not the desired value but the priority level of  the 
homeostatic subsystem is modulated by means of  allostatic load. Allostasis is often applied 
to explain a wide variety of  behavioral adaptations, from fluctuations in blood pressure to 

changes in food consumption. When the allostatic adjustment is going to be maintained for 
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a long period, such as the blood pressure case, modifying homeostatic setpoints apparently 
makes sense. In the case of  proximate stimuli such as food or water, the reconfiguration of  
priority levels seems to be a reliable motivation-based alternative. Figure 4 gives an example 
of  two arbitrary homeostatic systems with their priority levels being rearranged in response 

to stress stimuli and increased allostatic load. This direction satisfies the prerequisite that 
allostatic control can sense an average value for arterial pressure and gradually moves it 
upward. At the same time, it goes aligned with the notion of  a reconfigurable hierarchy of  
motivational drives elicited in section 1.2.1. 

1.2.3. Neural substrate for action selection 

In addition to the missing adaptation part, the work in [8, 9] has another limitation related 
to the ambiguous borderline between drive assessment and behavior selection. Allostasis 
should be distinguished with the resolution of  conflicting needs. In reality, action selection 
does not necessarily imply adjusting the internal systems’ parameters or minimizing future 

mismatched outcomes. There is an immediate trade-off  between water acquisition and self-
preservation when an animal is thirsty and hunted by a predator at the same time, and the 
decision of  which action to trigger should also consider the salience of  the water stimuli or 
the disposition of  predators. Therefore, action selection should be treated as a consequent 
yet distinct process from allostasis. Referring to the previous literature review, we define 

four requirements for an effective central selection system. First, the system must integrate 
information from both internal and external states. Second, it is capable of  interpreting the 
dominant motivational drive from that information. Third, it has an internal configuration 
for behavior representation and conflict resolution. Fourth, it generates outputs that allow 
selected actions to express themselves. Those requirements can be partially satisfied by the 

medial Reticular Formation (mRF) located in the brainstem and its interaction with other 
neural structures, especially the hypothalamus.  

As stated by Plaff  (2016), there should be a primitive, elementary, and universal neuronal 
“force” underlying all motivated behaviors. This powerful “force” – called central nervous 
system (CNS) arousal – is claimed to be one of  the essential capacities of  the brain as a 

central action selection device [15]. Generalized CNS arousal switches on ascending and 
descending systems in response to stimuli, and in consequence, facilitates the initialization 
of  any behavior. The relationship between arousal, motivational drives, and consequential 
behaviors could be expressed mathematically as a linear equation [15]. In short, arousal is a 
vector formulated upon the internal and external states of  the system, and the magnitude 

of  this vector is capable of  modulating behaviors. Humphries et al. [16] proposed that the 
best neural substrate to be assigned with the task of  generalized CNS arousal control – and 
thus, action selection – is the mRF. The mRF is a group of  interconnected nuclei located in 
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different parts of  the brainstem. Regarding external connections to other neural structures, 
the mRF includes ascending neuromodulatory pathways (i.e., ascending reticular activating 
system responsible for maintaining behavioral arousal and setting the overall motivational 
state of  the animal) to the cerebral cortex and descending reticulospinal tracts (in charge of  

somatic motor control) to the spinal cord [15, 16]. The reticular activating system projects 
anteriorly to the hypothalamus and receives input information from every sensory organ 
available to the organism [14]. The hypothalamus receives the neuroanatomical projections 
from the reticular activating system and modulates physiological and behavioral effectors 
of  homeostasis. Behavioral regulation can be achieved through a hierarchical arrangement 

in which hypothalamic sensing could be linked to the mRF [14]. 

Figure 5: Computational model of  the medial Reticular Formation. The mRF incorporates inputs from 

both sensory organs and internal homeostatic systems (black dashed arrows). Projection neurons (white large 

circles) excite arousal pathways (red arrows). Interneurons (black small circles) inhibit projection neurons. 

Reproduced from [13, 16, 17, 18]. 

In terms of  internal circuitry, the authors of  [16, 17] described the predominant neuron in 
the mRF – referred to as the projection neurons – as having a giant body and symmetric 
dendrites. A computational model is reproduced from [16, 17, 18], taking inspiration from 

the integration between the mRF and the hypothalamus (Figure 5). In this model, the 
projection neurons are arranged in a series of  stacked clusters, together with another type 
of  nerve cell called interneurons. Each cluster contains a combination of  both types. Giant 
projection neurons make excitatory synaptic contacts with both ascending and descending 
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arousal pathways, while smaller interneurons inhibit the activation of  projection neurons. 
Interneurons project exclusively within the cluster while projection neurons contact solely 
the neurons that belong to other systems (i.e., the hypothalamus and all levels of  the spinal 
cord) [16, 18]. Projection neurons collect an array of  unprocessed sensory inputs from all 

the ascending tracts of  the brainstem and relay these afferents to the cortex. This endows 
the mRF the role of  a brainstem “integrative core” capable of  intrinsic (putting together 
homeostatic information) and extrinsic (reacting to sensory input) action generation. The 
mRF is also promoted as a “mode selector” which decides the global behavioral state of  a 
vertebrate animal and influences regulatory actions [17]. The configuration of  the mRF is 

thought of  as a bottleneck necessary for converting massively concurrent and distributed 
information into constrained modes for action selection [17, 18]. 

1.2.4. Behavioral repertory of  desert reptiles 

As discussed above in section 1.2.3, arousal level could be calculated upon both external 

context and internal states of  the robotic agent in the form of  a vector with a magnitude 
capable of  regulating behaviors. The resulting behaviors can vary in response to the same 
motivation, corresponding to different lengths of  that arousal vector. Consequently, the 
animal can exhibit a rich and diverse behavioral repertory. 

Figure 6: Behavioral repertory for motivational tendency. Regulatory behavior depends on arousal level. 

Reproduced from [13,  28]. 

Reptiles perform behavioral changes based on the cost of  interrupting current activities 

(e.g., inaccessibility to resources) and the risk of  stressful situations (e.g., the disposition of  
the predator or distance from a refuge) [27]. Most of  the foraging and defensive tactics 
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exhibited by reptiles refer to possible resources and predators as visuospatial cues. Figure 6 
arbitrarily presents a diversity of  defensive behaviors with respect to the four main stages 
of  a predatory event: detection/identification, approach, subjugation, and consumption 
[28]. During the initial stage of  being detected and identified, lizards may try to stay safely 

out of  reach from their potential predators. While hiding is the most obvious way to avoid 
detection, lizards additionally exploit confounding camouflage methods. If  being identified 
as edible prey, similarly to other animal species, lizards perform locomotor escape (i.e., 
fleeing). After being approached, reptiles usually impede subjugation by discarding their 
own appendages to distract the predator or to elude its grasp. Tail autotomy is an extremely 

peculiar and common self-defense tactic in lizards. Additionally, the animals exhibit death-
feigning in which they “play dead” by maintaining a frozen posture. Most notably, reptiles 
can aggressively and abruptly attack the predator (e.g., hissing, biting, or scratching) when 
they are severely threatened. Currently, there is no evident observation regarding reptilian 
tactics to avoid consumption [28]. 

The situational changes in behaviors can be explained by Merker’s selection triangle [29]. 
According to Merker, three coherent steps should be taken to adopt the most appropriate 
action. First, the living organism follows an evaluation process of  internal states. Second, 
the target needs to be delicately weighted and selected. Third, the behavior congruent best 
with both the dominant internal states and the detected stimuli is selected. In this manner, 

a wide range of  regulatory behaviors can be expressed depending on the arousal needed to 
trigger it. By computing generalized arousal as a vector, behaviors of  the same category can 
also vary at different thresholds of  the vector’s magnitude. 
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2. Method 

2.1. Research question and hypotheses 

In section 1.2.2, we raise the need to reach a comprehensive concept of  allostatic control 

which integrates, reorganizes, and weighs multiple homeostatic subsystems. Critically, we 
propose that homeostatic regulation is supervised by allostatic control as a meta layer that 
persistently enables the organism to attain a fine coupling between internal needs and what 
the stochastic environment can offer [7]. Among the vast data that can be acquired during 
the perceptual processes, the preceding sensory events and the configuration of  external 

surroundings seem to be the most informative ones [24]. According to [25], an unpleasant 
sensation encodes an impending threat to survival, while an appetitive one resembles an 
opportunity. We leverage the probability of  environmental stimuli as the representation of  
threats and opportunities provided by the animal’s ecosystem within a larger time scale (in 
comparison to the time step in which the allostatic controller monitors and integrates 

homeostatic signals). The abundance or scarcity of  resources as well as the frequency of  
alarming situations (e.g., excessive temperature, predatory events) can be examples of  this 
variable. A model promoting adaptations based on the probability of  environmental stimuli 
would be our main contribution to the previous works in allostatic control. 

Regarding Sanchez-Fibla’s model [8, 9], besides the adjustment of  the homeostatic desired 

values, in order to formulate the motor contribution of  a specific homeostatic system, an 
invariant weighting factor k is applied uniformly during the agent’s lifetime. The value of  
this k factor can be seen as reflecting the position of  the corresponding motivational drive 
within the hierarchical ranking organization explained in section 1.2.1 (Figure 3). The 
higher the importance of  a motivational drive, the higher the value of  the k factor, the 

more the drive is weighted, which results in a higher probability of  the related action to be 
triggered. This implies a potential association between the hierarchy of  internal drives and 
our introduced notion of  environmental threats and opportunities.  

Thus, we pose the research question regarding the relationship between the probability of  
environmental stimuli and the priority level of  motivational tendencies. We envision that 

the sparseness of  a favorable type of  stimuli will weigh the associated drive to a greater 
extent than a setting in which the probability of  those stimuli is high.  

Moreover, we would like to investigate the relevance of  environmental settings during drive 
evaluation and behavior selection processes, and how such information is used by living 
organisms to perform allostatic adaptations. As discussed, the relative priority level of  a 

motivational drive requires a calibrating parameter representing cumulative perceived stress. 
This factor could be formulated in either an interoceptive or exteroceptive manner. The 
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exteroceptive cues for adaptation could straightforwardly be the chance of  encountering a 
wanted stimulus, which correlates with the number of  resources or events that are detected 
and stored during an appropriate time interval. On the other hand, allostatic load could be 
reliably integrated as an interoceptive calibrating factor, considering it as the disturbing cost 

of  chronic exposure to unresolved threats. In this case, the value of  allostatic load would 
be computed as the mean of  accumulated drive intensities during a proper time span.   

Thus, our three concrete hypotheses are: 

H1. A reconfigurable hierarchy of  drives with dynamic weighting factors allows the agent 
to achieve higher internal stability than a static one with constant weighting factors. 

H2. An interoceptive agent configuring its hierarchy of  drives based on allostatic load can 
regulate its behaviors as sufficiently as one based on external sensing of  stimuli availability. 

H3. The adaptation of  the interoceptive agent is reflected in its behavioral self-regulation 
and correlates with the changing probability of  environmental stimuli. 

2.2. Model implementation 

In summary, allostatic control in our model should be implemented to meet requirements 
regarding its capacity of  integrating, reorganizing, and weighting motivational tendencies. It 
should permit an ongoing assessment of  the matching level between internal states and 
external conditions as well as an adjustment of  hierarchical weighting factors in response to 

changing probability of  environmental opportunities and threats. The model built in [8, 9] 
has already offered some solutions, viz., gradient-based homeostatic loops, computed local 
perception, and the distribution of  motor energy to behaviors based on the intensities of  
homeostatic subsystems. We plan to incorporate some of  those solutions in our extension 
and include the physiological and neuroscientific evidence aforementioned in section 1.2. 

2.2.1. World – Self  – Action paradigm  

We aim to decompose our model into sequential and hierarchical modules representing the 
fundamental functions of  behavioral regulation (i.e., encoding, evaluating, and selecting). 
Such a layered structure is influenced by the Distributed Adaptive Control (DAC) cognitive 

architecture originally built by Verschure et al. [30] and adapted in many pieces of  research 
in allostatic control [2, 31]. As per its description, DAC includes four tightly coupled layers 
(viz., somatic, reactive, adaptive, and contextual) stacked on top of  each other according to 
their levels of  complexity. The somatic layer comprising the sensors and actuators of  the 
body, plus all physiological variables essential for its survival. The reactive layer serves drive 

reduction and contains predefined and stereotyped sensorimotor loops supporting basic 
functionalities (e.g., seeking, fleeing, etc.) and generating internal signals able to modulate 
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the subsequent layers. The adaptive layer allows the agent to deal with environmental 
uncertainty through learning from sensation-reflex couplets and shaping actions by both 
internal and external states. The contextual layer includes memory-based goal planning and 
policies that reinforce predictions. These layers can be grouped into three columns that 

represent the agent’s perception of  the exterior world (i.e., “world”), its internal states (i.e., 
“self ”), and actions that serve as the interface between those two (i.e., “action”). We center 
our work on DAC’s reactive and adaptive layers. 

Figure 7: DAC’s World – Self  – Action framework. The “world” column (left, blue) provides information 

from the environment. The “self ” column (middle, green) senses, integrates, evaluates, and weighs internal 

variables. The “action” column (right, red) chooses the proper action based on the most salient stimulus and 

the most dominant drive, then generates motor commands to execute that selected action. Orange arrows are 

exclusively exhibited in exteroception-based adaptation, while the blue arrow is only performed in the case of  

interoception-based adaptation. Memory-based functions and goal-directed behaviors in the contextual layer 

are not elaborated. Reproduced from [2, 18, 20, 30, 31]. 

Figure 7 describes the inclusion of  our proposed structure, following the World – Self  – 

Action paradigm. Although the implementation of  our allostatic control utilizes sensory 
input categorization, fosters autonomic alterations operating on a fairly prolonged temporal 
window, and goes beyond spontaneous reactions, it is not fully adaptive. This is due to the 
lack of  a heuristic process of  associative learning – which is considered to be a must-have 
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of  the adaptive layer. Thus, we place the allostatic controller at the interface between the 
reactive and adaptive layers instead of  being merely reactive as in most literature [2, 8, 31].  

According to [32], exteroception is how the agent perceives its external “world”, i.e., the 
information about the relationship between the body and its surroundings. Exteroceptive 

information is acquired by the sensors that the robot possesses and include indicators such 
as the agent’s relative position to objects populating the environment (i.e., proximity), visual 
properties of  those objects (e.g., colors, structures, etc.), auditory cues, haptic feedback, or 
other inertia measurements. On the other hand, interoception is a group of  physiological 
signals derived from inside the body, relating to information about the state of  well-being 

and energy, physical and chemical conditions, stress, and arousal levels. For example, the 
living system “feels” the internal variations of  glucose level, pH, or body heat whenever 
exposed to extreme temperatures, consumes food, or exerts water. That kind of  inner 
fluctuations – which we call “impact” – is converted and normalized by the homeostatic 
controllers in the second “self ” column. 

The “self ” column additionally contains an allostasis controller. Both interoceptive and 
exteroceptive adaptation mechanisms will be implemented within this node. The allostatic 
controller receives both homeostatic signals and stored data from previous encounters with 
stimuli. Afterward, the information is fused and translated into newly proposed variables, 
e.g., accumulated allostatic load. The allostatic module gets access to, retrieves information, 

and makes modifications to an internal hierarchy that holds values of  all weighting factors 
of  all motivational drives. Drive intensities are consequently weighted and sent in parallel to 
the action selector in the third column. The action selector follows the basis of  the mRF: it 
serves as a convergent bottleneck that transforms enormous information generated from 
the previous modules into internal representations of  regulatory behaviors and makes the 

decision of  which congruent action to trigger from those representations.  

The action selector is authorized to access a stocked collection of  behaviors in the “action” 
column, looks up and obtains specific modulating parameters of  the selected behavior, and 
sends those parameters to a motor controller that configures and delivers control signals to 
the robot’s actuators, putting the demanded somatic movements and autonomic functions 

into practice. Although the behaviors encapsulated in our collection are still relatively poor, 
mediating the robot’s velocity by the strength of  arousal level is the first step towards a 
richer behavioral repertory as explained in section 1.2.4. 

2.2.2. Gradient and non-gradient-based subsystems   

In order to validate the performance of  our introduced model, we proceed to implement 
three typical homeostatic subsystems of  the desert lizard, viz., thermoregulation, hunger, 
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and thirst. However, finding a reliable method to represent those systems computationally 
is not so trivial. Previous works in allostatic control have been done in various directions. 
Sanchez-Fibla et al. [8, 9] used vector fields, i.e, gradients, to compute the local perception 
of  the robot, estimate the actual and desired values of  the homeostatic subsystems, and 

control the robot’s navigation within the vector fields. Meanwhile, Vouloutsi et al. [2, 3] 
obtained homeostatic states and behavioral expressions without gradients. Both directions 
have their own advantages and limitations. 

It appears that Sanchez-Fibla et al. concentrated their work on spatial navigation and low-
cost path planning to a waypoint goal. Hence, it is reasonable for them to leverage the 

gradient method which has a reputation in this field. Moving along the gradient’s direction 
allows navigation to the local maximum/minimum location in the gradient, while moving 
perpendicularly establishes a safety parameter contour [33]. Both techniques are handy in 
the cases of  retreating towards a refuge, flocking, or thermoregulation. Another advantage 
might be the degree to which the sensorimotor functions and spatial characteristics are 

coordinated, which leads to the faster identification of  areas of  interest.  

Figure 8: The temperature gradient. The temperature at the surface (left, orange) is at 50ºC, and the robot 

is driven to move beneath the sand (right, blue) where the temperature is at 27.5ºC–30ºC. The yellow dot is 

the location of  the robot, containing an actual temperature value and four quadrants of  the local view. 

We follow the gradient-based approach in [8] to build the temperature subsystem as a 
simple gradient composed of  an actual value perceived by the agent’s local perception and 

multiple desired locations within the same vector field. The agent will try to place itself  at 
an optimal distance to the sand surface, i.e., the highest peaks of  a heat map to which the 

!22



gradient representing the temperature subsystem would correspond. Figure 8 depicts how 
we build the gradient as a 220x220 matrix to make it consistent with the experimental 
arena’s size. The ultimate left side of  the matrix portraying the surface (with a temperature 
value of  50ºC), and the right side represents cooler places beneath the sand. We inversely 

normalize the temperature from 50–27.5ºC to a numeric value ranging from 0–1. The 
desired value is 0.9, approximately equivalent to 27.5ºC–30ºC. The x and y coordinates of  
the robot are interpreted as the row and column that make up a certain cell (containing a 
specific temperature value) in the matrix. It is worth mentioning that there is a constraint 
of  local perception which means the agent has no knowledge of  such a heat map. The 

local view comprises four quadrants (upper left, upper right, lower left, and lower right). 
Each quadrant includes the agent’s neighbor cells that form a smaller 4x3 matrix. q0, q1, q2, 
q3 are the mean values of  those four quadrants, and aV is calculated as the mean of  the 
whole local view. Those quadrants are practically useful to steer the agent away from the 
so-called sand surface, with the hsign controlling the increasing/decreasing direction of  the 

gradient i and the ADsign controlling the increasing/decreasing direction between the actual 
and desired values. Depending on how the actual value differs from the homeostatic limits, 
the system can ascend or descend the gradient to achieve constancy. 

For instance, when the upper left quadrant q0 is “warmer” than the upper right one q1, hsign 
is set to 1, and the robot tends to turn right. In the opposite case, hsign is set to -1, and the 
robot tends to turn left. Likewise, if  dV is greater than the inverse aV, ADsign is set to 1, 
and the robot is driven towards the cooler areas to reduce the actual temperature value. 

The ADsign and hsign values can be used to carry out the pertinent motor actions in order to 
bring the actual value closer to the desired one.  

However, the agent in [8, 9] was provided with the local view of  the constructed gradients 
instead of  incoming data from the equipped sensors, going beyond constraints that animals 
in nature might have regarding their senses. By associating the homeostatic values with 

spatial locations of  the gradient, the agent does not technically “feel” the fluctuations of  
internal variables, making the approach less reflexive and robust, particularly in the case of  
foraging. Vouloutsi et al. [2, 3] proposed more abstract techniques to put homeostasis and 
allostasis into practice through sensorimotor abstraction and knowledge representation. By 
allowing the input devices to coordinate and calibrate with each other, the researchers of  

[2] facilitated the mappings from sensor-centric information onto an ego-centric reference 
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frame that the robot used as its pivot perception. Once aligned, the raw sensory data is 
processed into symbols of  interest with detailed properties. The control system persistently 
monitors the actual values of  all homeostatic modules and activates alerts whenever there 
is a tendency to bring back the balance. The authors of  [2] also provided each homeostatic 

subsystem with a natural decay factor that can compensate or detract it, which we replicate 
for the implementation of  our hunger and thirst subsystems. The symbolic representations 
of  the acquired environmental information are “target” and “impact” in our case. The 
“target” entity informs the agent the type of  resources it is in contact with and its relative 
position to the resources (through a camera and two proximity sensors) – all are helpful for 

the robot to move towards or away from the salient stimulus. Meanwhile, the “impact” 
entity indicates fluctuations that such resources make to the related homeostatic subsystem 
after being consumed. For instance, the energy level of  a living body will add up a certain 
amount whenever it consumes food, and resource impact refers to that incremental unit.  

Thus, given a time step t and a decay factor b, depends on whether the robot is co-located 

with a relevant resource and receives an impact a, the actual value aV of  the subsystem i 
will be updated as follows: 

2.2.3. Interoceptive and exteroceptive cues for adaptation 

In [8, 9], the weighting factor k is fixed and it simply controls the inertia suffered in each 

homeostatic subsystem, i.e., the weight of  that subsystem. As explained in section 2.1, we 
argue that this k factor is inconstant and could rather be modified based on either the 
likelihood of  finding a certain resource or the allostatic load.  

In the first case of  adaptation based on external sensing, the agent keeps track of  all 
stimuli reached along its trajectory by storing them into an array sustained only during a 

specific time span. It is worthwhile to mention that the agent is constrained by its local 
sensing, and thus, the number of  detected targets is not identical to the number of  actual 
resources currently populating its habitat. There is a lack of  a global view and resource 
identity here: the agent can identify only one object at a time, and it cannot tell whether the 
proximity sensors are sensing an object it came across before. This number of  detected 

resources is inversely encoded as a numeric value ranging from 0–1. A higher encoded 
value represents a lower chance of  encountering the desired stimuli. This value is close to 1 
when the agent can barely spot any consumable target, and it approximates 0 when the 
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agent perceives an abundance of  resources. In both strategies of  adaptation, the weighting 
factor k is first initiated according to the hierarchical organization of  drives described in 
section 1.2.1 (Figure 3). Given a time step t and the initiated value k0, below is the equation 
of  how the weighting factor k of  the behavior i is regulated by the number n of  

exteroceptive detected resources: 

In the second approach of  modulating k based on interoceptive cues, we aim at using the 
allostatic load as the mean value of  tensions that need to be reduced in order to gain back 
homeostatic balance after a specific time period. “Drive intensity” refers to the absolute 
difference between the actual and desired values (|aV – dV|) of  the homeostatic system i. 
During a predefined period, similarly to the exteroception-based direction, the agent stores 
all of  the generated drive intensities into an array. We apply a low-pass filter to the array to 
pass signals with a frequency lower than a selected frequency of  0.2, and attenuate signals 
with frequencies higher than that cutoff  frequency. Allostatic load is calculated as the mean 
value of  that array, solving the requisite that the homeostatic system will relax if  no drive 

intensity is generated after a while. In this respect, the k factor of  the behavior i is adjusted 
by the allostatic load AL as the following equation: 

In the particular case of  temperature, since the thermoregulation subsystem possesses 
many privileges that might hamper other needs within a limited time of  the simulation, we 
grant the agent with a higher tolerance of  hotness by applying a discount of  0.2 to the 
temperature allostatic load. Those privileges include a higher initiated hierarchical order, a 

demanding desired value, the lack of  a cyclical way for the actual value to decay gradually. 
All k factors of  all motivational drives are subsequently integrated with drive intensities, 
and the final results – which we call “forces” – are important criteria for the action selector 
to determine the dominant motivational drive. The term “force” comes from the fact that 
we will apply this value to the motor translational speed at the very next time step.   

f  integrates the current value of  k and the difference between the actual and desired values 
(|aV – dV|) to weigh the contribution of  a drive. Therefore, when two forces representing 
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weighted motivational tendencies are compared and both have the same value of  intensity 
|aV – dV|, the dominant drive will be the one with the higher k. However, if  the gradient 
i with a lower value of  ki has a higher intensity, the system might favor this i gradient. 

2.2.4. Mechanism for action selection  

The limited motor capacities of  the mobile robot could be distributed to several behaviors 
running in parallel by gradient-based implementation. Besides computing the local views 
and the actual values of  the gradients, Sanchez-Fibla et al. [8, 9] used the hsign and ADsign as 
modulating parameters bringing the aV closer to the dV to achieve homeostatic constancy. 

The agent specifies a certain strength to each gradient – ranging from no contribution at all 
to a maximal influence – by forming a vector. The magnitude of  that vector is equal to the 
motivational tendency (|aV – dV|), while its angle indicates the ascending or descending 
gradient direction (controlled by hsign and ADsign) towards the desired location. The mapping 
to the left and the right wheels of  the robot was done by summing up the contributions of  

all gradients. Thus, the selected behavior is the result of  the combined motor contributions 
from all gradients, i.e., all motivational tendencies [8]. As a result, the lower-priority needs 
are not totally downplayed by the control system, and thus, Sanchez-Fibla’s model is more 
efficient in terms of  sustaining a higher global stability. Since we apply both gradient-based 
and non-gradient-based techniques in our system, motor mappings in our study cannot be 

carried out that way. Our action selector ignores all other secondary needs, only chooses to 
trigger the behavior that satisfies the most dominant one. The formation of  motor control 
commands in our study is also different from [8, 9] since we utilize the Robot Operating 
System (ROS) framework to build the software architecture instead. Our model has access 
to an internal collection of  several modular behaviors, viz., obstacle avoidance, exploration, 

sand diving (moving towards the cool areas), and target reaching. This collection further 
holds all inherent motor parameters of  the encapsulated behaviors. Those parameters can 
be applied to determine the robot’s translational speed v and rotational speed ω at the next 
time step. The system retains obstacle avoidance (v = 0,  ω = –1 for an obstacle on the left 
and v = 0,  ω = 1 for an obstacle on the right) and free exploration (v = 1 and a random ω 
ranging from 0–0.5) as the most and least important goals, respectively. For the sand diving 
behavior, we refer to the way Sanchez-Fibla et al. [8] calculated the forward and backward 
speeds of  the robot utilizing hsign and ADsign, and put together two new equations for the 
translational and rotational speeds: 

For food and water approaching behavior, we apply the difference d between the current x 
coordinate of  the agent and the current x coordinate of  the detected resource to determine 
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the target rotational speed of  the robot. This value d indicates whether the resource is on 
the agent’s left or right side. If  this value is positive, the resource is on the right side, and 
the robot turns right. If  this value is negative, the resource is on the left side, and the robot 
turns left. The equation for the translational speed is similar to the sand diving behavior. 

2.3. Technical descriptions 

In order to manipulate the robot and structure the interactions, we use the open-source 
ROS robotic framework [34]. ROS is not just a networking protocol but also an operating 

system in concept since it provides services such as hardware abstraction, low-level device 
control, common functionality, real-time rendered user interfaces, and messaging transport 
between modules. ROS also provides exploited sensors, ways to store and apply roto-
translation matrices, plus convenient registration of  new publisher and subscriber nodes.  

Figure 9: Gazebo simulated environment. The Gazebo world includes a rectangle experimental arena with 

wall boundaries. The green spheres populating the arena portray food, and blue ones represent water sources. 

The lower half  of  the arena bears a resemblance to the sand surface with high temperatures. 

The overall system used in this study comprises the mobile robot simulated in a Gazebo 
environment (Figure 9) which we control using self-contained nodes written in Python. In 
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order to initiate a variety of  behaviors, the simulated robot is allowed to send messages to 
the Python nodes and vice versa. For example, one ROS node can capture the images from 
a camera and send those images to another node for processing. Visual stimuli detection is 
achieved using image processing and feature extraction libraries such as the Open Source 

Computer Vision Library (OpenCV) [Bradski, 2000]. Various Python executable scripts are 
in charge of  gathering data acquired from the Gazebo simulated environment, processing 
them into homeostatic and allostatic variables, and formulating roto-translation commands. 
Those control signals will be sent over via ROS protocol to the Gazebo simulator in order 
to allow vector-based movements to be executed. 

Figure 10: Software system overview. Messaging diagram between objects. Texts describe ROS topics and 

the direction of  arrows indicate the direction of  information delivery. Light grey objects represent messages, 

while dark grey objects resemble the components of  the World – Self  – Action framework.  

Figure 10 explains in detail the mechanism used by ROS nodes to communicate through 
subscribers and publishers. ROS messages – which can be customized – are categorized 

into specific topics, and nodes may publish messages to a particular topic or subscribe to a 
topic to receive information. Following object-oriented programming principles, we decide 
to construct the components of  our architecture and the custom messages as objects with 
properties as the elements of  sensation, homeostasis, allostasis, and action. Objects might 
contain values that the agent acquires, processes, or generates when interacting with the 

Gazebo world, such as: sensory data, resource impacts, four quadrants of  the local view, 
actual values, drive intensities, stresses and allostatic loads, weighting factors, or forces of  
all subsystems. Other objects hold inherent attributes of  the model’s components, e.g., the 
desired values, the decay factors, initiated values of  the weighting factors, and the motor 
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parameters of  stocked behaviors. The motor signal for a target vector-based movement is 
also formed as a messaging object. 

2.4. Experimental design and setup 

We implemented three different kinds of  simulated agents to observe whether they can 
perform sufficient behavioral adaptations within the simulated Gazebo environment, and 
to what degree they can achieve organismic integrity. The probability to provide resources 
was randomly distributed, and we also expected to see the correlation between that and the 
agent’s internal parameters. The Gazebo workspace consists of  a rectangle 2.2x2.7m arena 

with four walls as boundaries. The synthetic two-wheeled mobile robot is equipped with a 
camera and two proximity sensors. It can freely navigate within the experimental arena, 
rotating in both directions: clockwise and counter-clockwise to head towards or to steer 
away from certain locations. Multiple homeostatic subsystems were implemented, viz., 
thermoregulation, hunger, and thirst. The temperature gradient is represented as a matrix 

associated with the experimental arena, being colder at one side and reaching the highest 
peak at the opposite side of  the matrix. Water and food sources were allocated within the 
robot’s explorable space as green and blue spheres, respectively. Blue spheres were 
distributed to one specific corner of  the arena, and green spheres populated another area. 
All spheres were spawned to the environment and presented along the path of  the agent, 

so the agent can autonomously execute an approaching or retreating behavior only when 
the corresponding homeostatic system is unbalanced. When the robot reaches the desired 
location and/or colocates with the target resource, the sphere is consumed (i.e., eliminated 
from the workspace), and the associated need is satisfied. The probability of  the spherical 
resources was constantly modified during the agent’s lifetime, starting with the minimum 

spawning speed of  one spherical object per 2 seconds. The spawning speed adds up 2 
seconds after every 5 seconds, and when it reaches the maximum threshold of  one sphere 
per 50 seconds, the probability of  resources decreases.  

As for the setup of  the synthetic agents, to ensure smooth simulations with explanatory 
results, we assigned and calibrated several arbitrary values that are inherent to the agent’s 

internal systems and representational entities (Table 1). The hunger and thirst homeostatic 
systems possess three properties which demonstrate their characteristics in nature: the 
impact of  relevant resources, the decay factor, and the minimum homeostatic limit. Living 
organisms tend to favor water over other nutritional sources since it is essential and needed 
in a greater degree than any other ingested substance, being classified as a macronutrient 

[21]. Thus, the agent’s energy level – glucose level in this particular case – is proposed to 
have a lower decaying speed of  the actual value (0.01 per second) in comparison to that of  
the water content (0.02 per second). Besides, every time the agent colocates with a “food” 

!29



sphere, its energy level increases with a unit amount (i.e., impact) of  0.2, while that value is 
0.4 in the case of  consuming water. The thirst homeostatic subsystem also has a more 
demanding desired value of  0.95 than that of  the hunger one (dV = 0.85). The default 
ranking orders of  homeostatic subsystems within the hierarchy of  needs also differ. 

Hunger is the least prioritized motivational drive with initialized k of  0.78. The need for 
water has an initiated k value of  0.8, and the k value of  the thermoregulation drive starts 
with the highest base of  0.85. 

Table 1: Arbitrary properties of  homeostatic subsystems. See text for further explanation. 

The control system was built as per the descriptions in section 2.2. There are three versions 
of  implemented agents. One operates under a simple reactive, autonomic mechanism with 
a static hierarchy of  motivational tendencies. The weighting factors k were not adjusted in 
this version. The second version allows the agent to regulate the k factors adaptively based 

on exteroceptive sensing of  the probability of  environmental stimuli. The third version 
promotes an interoceptive agent configuring its hierarchy of  internal drives based on the 
allostatic load. After every 1,000 time steps, the accumulated array of  perceived stress (used 
to compute allostatic load) and the accumulated array of  resources reached were cleaned, 
and both tracking processes reset. Each type of  agent was tested during 10 simulations. 

Every simulation started with the same fixed position (x = 0.1m, y = 1.1m) of  the robot, 
which means agents began their excursions at a cool location equidistant to both food and 
water sources. The motivation behind this setup is to have the very first observations of  
which adaptation mechanism might work best in helping agents sustain higher internal 
stability and ensure a reliable correlation between needs, actions, and resources.  

Each simulation of  our study lasted for approximately 15–20 minutes and included 500,000 
time steps. At each time step, all the ROS nodes synchronously exchanged data, and those 
generated data was concurrently logged to CSV files which were used later for data analysis. 
The logged information from every single simulation includes: the trajectory of  the agent, 
the number of  resources detected, homeostatic information, allostatic parameters, and the 

dominant drive at every time step (Table 2). Data analyses for both individual simulations 
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Properties Energy Water Temperature

Desired value dV 0.85 0.95 0.9

Resource impact a 0.2 0.4 N/A

Decay factor b 0.01 0.02 N/A

Initiated weighting factor k0 0.78 0.8 0.85



and ones grouped by agent type were carried out, and the detailed results are explained in 
the following section 3. 

Table 2: Data collected from simulations. Items marked with (*) are exclusively in the case of  interoceptive 

agents, and items marked with (**) are collected for exteroceptive adaptation. 
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Collected data Description

Time step The current time step.

Robot’s position x, y coordinates of  robot’s location at every time steps.

Resources’ position
Type (color) and x, y coordinates of  resources during 

agent’s lifetime.

Resource probability n (**)
The quantity numbers of  food and water detected at 

every 1,000 time steps.

Desired values dV The desire values of  all homeostatic subsystems.

Temperature local view
The mean values of  four quadrants q0, q1, q2, q3 of  the 

temperature gradient at every time steps.

Temperature hsign and ADsign
The hsign and ADsign values of  the temperature gradient 

at every time steps.

Actual values aV
The actual values of  all homeostatic subsystems at 

every time steps.

Drive intensities |aV – dV|
The absolute difference of  the actual and desired values 

of  all homeostatic subsystems at every time steps.

Allostatic loads AL (*)
The mean values of  drive intensities of  all homeostatic 

subsystems at every 1,000 time steps.

Weighting factor k
The weighting factors of  all motivational drives at 

every time steps.

Force f  = 1 + k .|aV – dV|
The final forces (weighted drives) of  all motivational 

drives at every time steps.



3. Results 

3.1. Static and dynamic hierarchy of  motivational drives 

The first hypothesis to be proven in our study is whether the reconfigurable hierarchy of  

motivational tendencies holding dynamic k values can permit the agents to adapt better to 
a stochastic environment in comparison to a static hierarchical organization of  drives with 
fixed k values. By analyzing both homeostatic and allostatic parameters generated during 
the simulations, we hope to prove this hypothesis statistically. 

3.1.1. Results for homeostatic control 

The primary objectives of  behavioral regulation are to stabilize the physiological conditions 
within the living system and reduce the erroneous signals, i.e., the drive intensities to gain 
back homeostatic balance. Once all homeostatic systems are defined, the temporal series of  
actual values can be obtained during a tracking session equivalent to the agent’s predefined 

lifetime of  500,000 time steps. 

Figure 11: Time series of  individual actual values. Each row of  three plots comes from an individual 

simulation. The green plots indicate the actual energy level, the blue ones plot the actual water content, and 

the values constituting the red plots are extracted while the agent navigates within the temperature gradient. 

The grey lines bear a resemblance to the desired values of  the corresponding homeostatic subsystems.  

We chose three sample individual sessions; each comes from an agent performing one of  
the three particular ways to configure the weighting factor k (described in section 2.4). The 
actual values of  the implemented subsystems were extracted at each time step and are 

shown in Figure 11. The hunger and thirst homeostatic systems suppose to keep the actual 
values higher than or equal to the desired values, while the thermoregulation subsystem 
should try to reduce the actual value lower than the favorable temperature of  30ºC (higher 
than the inverted numeric aV). The organismic viability of  an agent is considered to be 
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fatally endangered whenever the actual energy or water value reaches the bottom of  the 
graphs (aV = 0.1), or when the temperature values stay atop at 50ºC for a long while. The 
more the actual values stay within the permissible homeostatic ranges, the more likely the 
agent reaches the appropriate stimulus, the faster the homeostatic recovery process, and the 

better adaptations the agent performs.  

By these time series charts, we can observe that the interoceptive and exteroceptive agents 
had the tendency to maintain the actual values of  water and energy around the homeostatic 
minimum limit with fewer deviations (i.e., fewer outliers and drastic shifts caused by either 
the lack of  detected resources or insufficient responses). Besides, it seems like they could 

react more quickly to return to the cooler areas of  the temperature gradient, considering 
this time series as a collapse of  the robot’s trajectory into one dimension [8]. Thus, we 
could see that the interoceptive and exteroceptive agents have the tendency to perform 
better adaptation and achieve better stability than the one with constant k. It is worthy to 
mention that due to a higher decay factor of  water content, the energy system seemed to 

achieve better results in general. Likewise, the temperature system performed the worst 
since we did not implement an efficient way for the temperature value to decay gradually. 

Table 3: The mean and standard deviation values of  actual values. From all sessions of  each agent type 

for each subsystem. Normality test p-value = 0.000 due to a large sample size of  5,000,000 time steps. 

Yet individual simulations cannot be generalized, and analyzing all simulations grouped by 
regulatory mechanisms might give us a more reliable conclusion. Data from all simulations 
of  the same agent type were concatenated and both mean and standard deviation were 
computed. Table 3 depicts the mean and standard deviation values of  the aV time series 

from all available sessions of  each agent type for each homeostatic subsystem. The means 
support our hypothesis that both types of  adaptive agents achieved higher viability than the 
one with fixed k. Also, the actual values measured from the interoceptive agents are slightly 
higher than those from the exteroceptive agents. However, we could not see any significant 
differences between the standard deviations, which means we cannot tell which kind of  

agent stabilized homeostasis with less variability. Since each homeostatic subsystem has a 
different desired value, we carried out the very same processes to achieve statistics results 
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Energy Water Temperature

Mean Std Mean Std Mean Std

Interoceptive Agent 0.85 0.16 0.81 0.19 0.62 31.3 0.35

Exteroceptive Agent 0.83 0.15 0.74 0.22 0.60 32.1 0.36

Constant k Agent 0.76 0.19 0.66 0.25 0.56 33.3 0.36



for drive intensity (|aV – dV|). Table 4 gives us more precise judgments about how the 
agents were satisfying their needs or suffering from inadequate responses during the 
simulations. The results of  the means and standard deviations of  the drive intensities draw 
similar conclusions as those of  the actual values, yielding no reliable implication. 

Table 4: The mean and standard deviation values of  all drive intensities. From all sessions of  each 

agent type. Normality test p-value = 0.000 due to a large sample size of  5,000,000 time steps. 

We eliminated the temporal component to extract and plot information about which ranges 
of  drive intensity that each agent group falls within the most. Figure 12 shows the bar 
histograms of  the concatenated data from all simulations grouped by the type of  agent. 
The drive intensity span was divided into three smaller ranges: 0 ≤ 0.33 ≤ 0.66 ≤ 1. The 

lower the drive intensities of  a certain homeostatic system, the better the agent fulfills the 
relevant need, the more stabilized that internal system is. An effective adaptive mechanism 
should produce histograms of  drive intensities with the bottom bars to be the longest.  

Figure 12. Histograms of  group drive intensities. The |aV – dV|span are separated in 3 smaller ranges: 0 

≤ 0.33 ≤ 0.66 ≤ 1. The number next to a bar indicates the mean value of  that particular range. 

We also ran Wilcoxon rank-sum and Levene's tests, getting p-values less than 7.2e-05 when 

comparing all ranges of  each histogram. Thus, we confirm that each histogram's 0–0.33 
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Hunger Thirst Thermoregulation

Mean Std Mean Std Mean Std

Interoceptive Agent 0.05 0.13 0.14 0.18 0.30 0.31

Exteroceptive Agent 0.06 0.11 0.21 0.21 0.33 0.33

Constant k Agent 0.13 0.16 0.29 0.25 0.36 0.33



range differs from the other ranges (i.e., 0.33–0.66 and 0.66–1) significantly. With these 
histograms, we notice that the probability of  generating drive intensities (i.e., homeostatic 
error signals) above 0.33 of  the allostatic load-based agents is moderately lower than the 
exteroception-based agents in cases of  all homeostatic systems. In other words, for each 

homeostatic subsystem, the ratio between the length of  the bottom bar and the combined 
lengths of  the top and middle bars of  the interoceptive agent’s is higher than that of  the 
exteroceptive agent’s (0.01, 0.2, 0.39 in comparison to 0.002, 0.1, 0.28 – for the hunger, 
thirst, and temperature subsystems, respectively). The results probably accentuate a higher 
potential to cancel internal perturbations out of  allostatic load-based adaptation compared 

to exteroceptive-based adaptation. 

Figure 13. Drive intensities grouped by homeostatic subsystems (top) and by agent types (bottom). 

Orange lines indicate median values of  drive intensity. The vertical length of  boxes is the interquartile range.  

We additionally expect to discover some promising advantages in behavioral adaptation of  

an agent calibrating the weighting factors based on allostatic load, making this approach 
equally efficient to modulating internal parameters directly from raw sensory data. We 
observe that the interoceptive agents appear to balance better the trade-offs between the 
three subsystems. For instance, in the case of  adaptation based on external sensing of  
stimuli availability, the discrepancy between the mean value of  thirst intensities and the 

mean value of  hunger intensities is lower than that of  the interoceptive agents and that of  
the agents with constant weighting factor k (0.09 in comparison to 0.15 and 0.16). To 

!35



examine this assumption, we finally proceeded to analyze and visualize the variability or 
dispersion patterns of  drive intensities generated from each agent group in response to 
each homeostatic subsystem (Figure 13). The interoceptive agents generally created lower 
homeostatic error signals than the exteroceptive agents, and the exteroceptive agents also 

performed better than the agents with fixed k values, both in terms of  lower median values 
and less dispersion of  data. Although these outcomes do not reach statistical significance, 
we are convinced that longer simulations or better calibrated internal parameters might 
bring more reliable results supporting our hypotheses. 

3.1.2. Results for allostatic control 

Analyzing the actual values and drive intensities could only prove that the agents calibrating 
their hierarchy of  motivational drives dynamically can achieve organismic integrity better 
than an agent with invariant weighting factors. However, whether the adaptation performed 
correlates with the constantly changing resource availability has not been analyzed yet. By 

investigating the temporal series of  several internal variables (i.e., the number of  sensed 
stimuli n, the allostatic load AL, the weighting factor k, and the force f  – as explained in 
section 2.2.3), we can give more meaning to the behavioral regulation done by the agents. 

Figure 14. Results for allostatic control of  an agent with constant k. The temperature gradient provides 

the agent with no visuospatial cues at all. The weighting factors remain the same during the simulation. 

Behavior regulation can probably be executed without  the alterations of  the homeostatic 

subsystems’ priority levels, but it would not be congruent with the availability of  resources. 
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Figure 14 demonstrates the interrelation of  the aforementioned variables occurring during 
a single simulation of  an agent with a static hierarchical organization of  needs. As shown in 
the plot of  resources detected, a limited number of  spheres were spawned to the arena and 
the agent was profoundly hungry and thirsty. Thus, allostatic loads caused by the scarcity 

of  food and water sources were extremely high, correlating with the drive intensities of  the 
related subsystems. However, due to the fixed priority levels applied uniformly through the 
session, the final force f at a given time step does not correspond significantly to the stress 
perceived by the agent at the moment. With such a shortage of  water resources and low 
thermal stress, the agent was expected to perform the search for water more frequently and 

consistently. Instead, it just resembles the difference between the actual and desired values. 

Figure 15. Results for allostatic control of  an interoceptive agent. The weighting factors k correlate 

positively with the allostatic loads AL. 

The interrelation of  a single interoceptive agent’s allostatic load AL and weighting factor k 

are explained in Figure 15. The agent could spot an abundance of  food while the number 
of  sensed water remained slow. The allostatic load at a certain time step obviously reflected 
well the concurrent drive intensity. Yet for the number of  detected resources, their relation 
was not precisely expressed, especially at the second and last thirds of  the simulation. The 
average discrepancy between identified food and water spheres during the second third is 

significantly huge in comparison to that of  the last third, but the allostatic load – and thus, 
the weighting factor k – of  thirst was escalated to a much greater extent during the last part 
of  the session. The reconfiguration of  the priority levels was performed fluidly during this 
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simulation with each motivational drive reached the top ranking at least once. However, the 
agent ventured onto the simulated sand surface several times, and thus, the need to move 
“beneath the sand” was too drastic. Therefore, we could not observe clearly how the force f 
was influenced by the k factor. Nevertheless, we aimed to properly and statistically calculate 

the correlation utilizing the concatenation of  data from all sessions available.  

Figure 16. Results for allostatic control of  an exteroceptive agent. The weighting factors k of  food and 

water correlate negatively with the probabilities of  detected resources n, whereas the weighting factor k of  

thermoregulation remains the same during the simulation. 

Figure 16 shows similar charts for an individual exteroceptive agent. In contrast to the 
previous case of  a stress-based adaptation strategy, the weighting factors k was modulated 

so that their values correlate negatively with the perceived probability n of  environmental 
stimuli, ignoring what was happening inside the agent (i.e., signals such as drive intensities 
and allostatic loads). We noticed contradicting data during the first and last thirds of  the 
chosen session. Despite the intense dehydration the agent was suffering from, the priority 
levels of  the increased thirst needs during those time steps stayed low, subsequently de-

prioritized the tendency of  the agent to select the action of  drinking water. 

3.2. Interoception and exteroception-based adaptive agents 

The observations carried out during section 3.1 confidently support our first and second 
hypotheses about how a dynamic hierarchical organization of  internal drives is an essential 

feature of  sufficient regulation that ensures better organismic viability and integrity in both 
cases of  adaptation strategies (described in section 2.2.3). To further support the second 
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hypothesis and validate the third one, we analyzed the trajectories of  robots grouped by 
adaptation mechanism through logging their x, y coordinates within the experimental arena 
at every time step. We observe that both adaptive agents with the dynamic hierarchy of  
drives were able to prioritize navigations towards the food and water sources. At the same 

time, they tended to visit the right side of  the arena (37.5ºC–30ºC) more frequently, while 
agents with a fixed hierarchy of  motivational drives generate dispersed and unexplanatory 
trajectories that satisfy the most intense need for food, but fail to avoid the highest peaks 
of  temperature. However, it should not be misunderstood that adaptive agents considered 
the secondary, less prioritized needs by optimizing locomotion towards resources following 

paths that ensure thermoregulation. That should be a future extension of  our work. 

Figure 17. Robot trajectories and arena occupancy maps. Water is located upper right (light blue zone) 

and food is located upper left (light green zone). The left side of  the arena is the sand surface with the peak 

temperature, and the other half  represents cooler areas. 

We additionally build occupancy 2D histograms and grid maps for each agent group. An 
occupancy grid is a discretization of  space into fixed-sized cells, each of  which contains a 

probability that it is occupied. The robots’ concatenated trajectories and occupancy maps 
are depicted in Figure 17. The exteroceptive agents seemed to make optimal back and forth 
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excursions towards the specific corners where food and water spheres populated, probably 
because they were straightforwardly modulated by the external sensing of  existing food and 
water resources. However, considering the occupancy at the cool locales, the allostatic load-
based agents slightly ameliorated their regulated navigations. In addition, the interoceptive 

agents seemed to balance well the trade-offs between conflicting needs since efforts were 
allocated equally to all behaviors, which could be due to the fact that the weighting factor k 
of  the thermoregulation drive is also flexibly adjusted. 

Figure 18. Correlation matrices of  internal parameters. The numbers contained in cells are correlation 

coefficient r values. 

A correlation analysis was done to quantify the relationship between internal parameters of  

the hunger and thirst homeostatic subsystems (Figure 18). With these correlation matrices, 
we found the exteroception-based strategy delivering several correlation coefficients that 
make no sense and just point out the irrelevancy of  the weighting factor k in the reduction 
of  internal drives. The oddest ones include the moderately negative correlations between 
the k factor and the drive intensity |aV – dV| or the allostatic load AL. Besides, the k 

factor of  the hunger subsystem and the force f applied to the food catching behavior are 
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negatively associated, which means the action selection was not influenced by k. Likewise, 
the positive correlation between the number of  food detected and the hunger force proves 
insufficient adaptation to resource availability. This does not mean the way we stored the 
quantity of  reached target is impractical, but future works should consider the triplets of  

state - action - reward instead of  simply inverting the number of  available resources into 
the value of  the weighting factor k.  

On the other hand, the interoceptive agents exhibited a slight tendency to have all internal 
variables negatively correlated with the number of  detected resources n, especially the k 
factor and the force f. The results are not significant enough (i.e, the desired correlation 

coefficients of  most relationships are lower than 0.3) for us to establish any evidence about 
how coherently the allostatic load-based agents adapted to the fluctuating probability of  
environmental stimuli, comparing to one based on external sensing of  resources reached. 
Therefore, we cannot validate the third hypothesis but prove a potentiality of  that.  

Although we achieved a significant p-value = 0.000 due to the huge sample size of  data, we 

acknowledge that many inherent properties of  the homeostatic subsystems (enumerated in 
section 2.4) should be re-calibrated in order to yield remarkable results. Longer simulations 
or progressive techniques to tune the AL, k, and f variables could validate our suppositions 
about how allostatic load might play a key role in an intrinsic adaptive system. 
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4. Discussion 

In this study, we have addressed the question of  how behavioral self-regulation can be 
achieved through complementary homeostatic and allostatic principles. Allostasis plays a 
central role in the coordination of  multiple homeostatic subsystems interacting together to 

withstand instability currently sensed by the living system. In addition, it is not obligatory 
for our allostatic controller to anticipate the organism’s internal states in prior. Instead, the 
congruous behavioral sequences emerge out of  the reorganization of  the priority levels of  
homeostatic subsystems. In some sense, we can consider allostasis as a meta layer defining 
the possibilities for the animal to adapt accordingly to fluctuating patterns of  its habitat, 

being constrained by low-level cognitive processes.  

We have implemented two adaptive versions of  a simulated mobile robot that account for 
calibrating the importance levels of  motivational tendencies based on exteroceptive and 
interoceptive environmental cues. The main principles of  our computational model include 
decomposing behavior generation into functional modules incorporating physiological (i.e., 

allostatic load) and neuroscientific (i.e., the mRF) groundings that have not been explored 
fully in previous works regarding allostasis and action selection. We validated this model by 
testing thermoregulation and foraging behaviors of  the robotic agents within a simulated 
Gazebo environment. We observed that the concept of  a dynamic Maslow-like hierarchical 
organization of  motivational drives where the priority levels of  homeostatic subsystems are 

dynamically reconfigured can offer finer matchings between the agent’s internal needs and 
the opportunities or threats provided by its external surroundings. 

As discussed in the literature review, little is known about how exactly allostatic control is 
realized in biological living systems. We proposed extensions to previous works in allostatic 
control, precisely the dynamic adjustments of  the weighting factor k instead of  altering the 

desired values dV of  homeostatic subsystems [8]. Thus, we consequently pose the question 
concerning the possible coexistence and interplay between those two mechanisms, which 
could be a potential future extension of  our implemented work. The allostatic adaptations 
to proximate situational triggers from constantly changing habitat configurations could be 
done through our proposed method. However, if  the reason for adaptation derives from 

anticipatory disturbances and allostatic changes are going to persist for a longer temporal 
scale, changing the desired values dV would give rise to a more “evolutionary” perspective. 
Additionally, rather than the probability switching mechanism described in [8], future works 
can investigate how to adjust the homeostatic setpoints in another fashion. Examples could 
be modulating the dV in accordance with the impacts that autonomic systems can make on 

each other [21], or the predicted rates of  change and time course of  the new states [11]. 
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As clarified in section 1.2.2, there is no predictive regulation carried out within the scopes 
of  our study. Up to this point, the allostatic control described purely cope with immediate 
fluctuations that already occurred without forming any “prior knowledge”. Even though 
past encounters with external triggers or internal perturbations were used to follow a logic, 

the adaptive agents were totally unaware of  upcoming events and lacked a heuristic to deal 
with environmental uncertainty. A broader self-regulation that allows contextual, memory-
based processes and complex goal-directed behaviors together with allostatic control was 
inspected and evaluated in some preceding studies [31, 35, 36]. Future extensions should 
incorporate their findings and integrate our model into a complex cognitive architecture, 

with each layer concurrently functions on interfering purposes, i.e., the habitual reflexes 
handling proximate causes [35], or a goal-directed strategy allowing the agent to operate on 
longer time scales, utilizing information from the past (through memory) to make decisions 
appropriate for the future (i.e., planning) [36]. Subsequently, homeostatic error signals can 
be minimized either similarly to our direction of  adjusting internal parameters, or via the 

constant updates of  the higher layer’s predictions to approximate incoming sensory signals. 

The adequate mediation between these layers can be solved with the higher layer being able 
to up-shift or down-shift its anticipations and regulates all low-level mechanisms in concert 
[37]. The mRF and the basal ganglia – which is traditionally considered to be in charge of  
action selection – were implied by [16] to form separate behavior generation mechanisms 

that interact with each other in such a combined hierarchical-layered manner. The basal 
ganglia’s primary route to the brainstem is through the pedunculopontine nucleus, which 
itself  projects heavily into the mRF [16]. Complicated computations are executed by the 
higher level (i.e., basal ganglia), and when all neuronal layers compute in parallel, the basal 
ganglia can veto the output of  the mRF.   

Some critiques can be made to our implemented structure, one is how it ignores secondary, 
less prioritized motivational tendencies. Our model is a simplification that works to solve 
drive conflicts without multi-purpose behaviors such as ensuring an optimal path towards 
the location of  resources that avoids high temperatures. A potential direction could be the 
integration of  multiple gradient maps that can elicit multi-system navigation. For instance, 

biological beings in nature can incorporate gradient-based subsystems such as geomagnetic 
fields, visual landscapes, the Coriolis forces, infra-sounds, and atmospheric chemosignals in 
order to form a single observable behavior [38]. The carrying through of  internally defined 
and learned gradients influencing each other could underpin an integrative action selection 
process. Finding a plausible way to implement gradients resembling physiological measures 

(e.g., heart rate, skin conduction, etc.) will be valuable extensions for our control system. 
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