Skip to main content

A Functional Subnetwork Approach to Multistate Central Pattern Generator Phase Difference Control

  • Conference paper
  • First Online:
Biomimetic and Biohybrid Systems (Living Machines 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13548))

Included in the following conference series:

  • 887 Accesses

Abstract

Central pattern generators (CPGs) are ubiquitous neural circuits that contribute to an eclectic collection of rhythmic behaviors across an equally diverse assortment of animal species. Due to their prominent role in many neuromechanical phenomena, numerous bioinspired robots have been designed to both investigate and exploit the operation of these neural oscillators. In order to serve as effective tools for these robotics applications, however, it is often necessary to be able to adjust the phase alignment of multiple CPGs during operation. To achieve this goal, we present the design of our phase difference control (PDC) network using a functional subnetwork approach (FSA) wherein subnetworks that perform basic mathematical operations are assembled such that they serve to control the relative phase lead/lag of target CPGs. Our PDC network operates by first estimating the phase difference between two CPGs, then comparing this phase difference to a reference signal that encodes the desired phase difference, and finally eliminating any error by emulating a proportional controller that adjusts the CPG oscillation frequencies. The architecture of our PDC network, as well as its various parameters, are all determined via analytical design rules that allow for direct interpretability of the network behavior. Simulation results for both the complete PDC network and a selection of its various functional subnetworks are provided to demonstrate the efficacy of our methodology.

Supported by Portland State University and NSF DBI 2015317 as part of the NSF/CIHR/DFG/FRQ/UKRI-MRC Next Generation Networks for Neuroscience Program.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cohen, A.H., Bard Ermentrout, G., Kiemel, T., Kopell, N., Sigvardt, K.A., Williams, T.L.: Modelling of intersegmental coordination in the lamprey central pattern generator for locomotion. Trends Neurosci. 15(11), 434–438 (1992). http://linkinghub.elsevier.com/retrieve/pii/016622369290006T

  2. Deng, K., et al.: Neuromechanical model of rat hindlimb walking with two-layer CPGs. Biomimetics 4(1), 21 (2019). http://www.mdpi.com/2313-7673/4/1/21

  3. Duysens, J., Van de Crommert, H.W.: Neural control of locomotion; Part 1: the central pattern generator from cats to humans. Gait Posture 7(2), 131–141 (1998). http://linkinghub.elsevier.com/retrieve/pii/S0966636297000428

  4. Forrest, S.: Genetic Algorithms. ACM Comput. Surv. 28(1), 4 (1996)

    Article  Google Scholar 

  5. Frazier, P.I.: A tutorial on Bayesian optimization. arXiv:1807.02811 (2018)

  6. Guertin, P.A.: The mammalian central pattern generator for locomotion. Brain Res. Rev. 62(1), 45–56 (2009). http://linkinghub.elsevier.com/retrieve/pii/S0165017309000812

  7. Hunt, A., Szczecinski, N., Quinn, R.: Development and training of a neural controller for hind leg walking in a dog robot. Front. Neurorobot. 11, 18 (2017). http://journal.frontiersin.org/article/10.3389/fnbot.2017.00018/full

  8. Ijspeert, A.J.: A connectionist central pattern generator for the aquatic and terrestrial gaits of a simulated salamander. Biolog. Cybern. 84(5), 331–348 (2001). http://link.springer.com/10.1007/s004220000211

  9. Ijspeert, A.J., Kodjabachian, J.: Evolution and development of a central pattern generator for the swimming of a lamprey. Artificial Life 5(3), 247–269 (1999). http://direct.mit.edu/artl/article/5/3/247-269/2322

  10. Mantziaris, C., Bockemühl, T., Büschges, A.: Central pattern generating networks in insect locomotion. Develop. Neurobiol. 80(1–2), 16–30 (2020). http://onlinelibrary.wiley.com/doi/10.1002/dneu.22738

  11. Rubin, J.E., Shevtsova, N.A., Ermentrout, G.B., Smith, J.C., Rybak, I.A.: Multiple rhythmic states in a model of the respiratory central pattern generator. J. Neurophys. 101(4), 2146–2165 (2009). http://www.physiology.org/doi/10.1152/jn.90958.2008

  12. Stevenson, P.A., Kutsch, W.: A reconsideration of the central pattern generator concept for locust flight. J. Compar. Phys. A 161(1), 115–129 (1987). http://link.springer.com/10.1007/BF00609460

  13. Szczecinski, N.S., Hunt, A.J., Quinn, R.D.: Design process and tools for dynamic neuromechanical models and robot controllers. Biolog. Cybern. 111(1), 105–127 (2017). http://link.springer.com/10.1007/s00422-017-0711-4

  14. Szczecinski, N.S., Hunt, A.J., Quinn, R.D.: A functional subnetwork approach to designing synthetic nervous systems that control legged robot locomotion. Front. Neurorobot. 11, 37 (2017). http://journal.frontiersin.org/article/10.3389/fnbot.2017.00037/full

  15. Thompson, S., Watson, W.H.: Central pattern generator for swimming in Melibe. J. Exper. Biol. 208(7), 1347–1361 (2005). http://journals.biologists.com/jeb/article/208/7/1347/16006/Central-pattern-generator-for-swimming-in-Melibe

Download references

Acknowledgement

The authors acknowledge support by Portland State University and NSF DBI 2015317 as part of the NSF/CIHR/DFG/FRQ/UKRI-MRC Next Generation Networks for Neuroscience Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cody Scharzenberger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Scharzenberger, C., Hunt, A. (2022). A Functional Subnetwork Approach to Multistate Central Pattern Generator Phase Difference Control. In: Hunt, A., et al. Biomimetic and Biohybrid Systems. Living Machines 2022. Lecture Notes in Computer Science(), vol 13548. Springer, Cham. https://doi.org/10.1007/978-3-031-20470-8_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20470-8_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20469-2

  • Online ISBN: 978-3-031-20470-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics