Skip to main content

SNS-Toolbox: A Tool for Efficient Simulation of Synthetic Nervous Systems

  • Conference paper
  • First Online:
Biomimetic and Biohybrid Systems (Living Machines 2022)

Abstract

We introduce SNS-Toolbox, a Python software package for the design and simulation of networks of conductance-based neurons and synapses, also called Synthetic Nervous Systems (SNS). SNS-Toolbox implements non-spiking and spiking neurons in multiple software backends, and is capable of simulating networks with thousands of neurons in real-time. We benchmark the toolbox simulation speed across multiple network sizes, characterize upper limits on network size in various scenarios, and showcase the design of a two-layer convolutional network inspired by circuits within the Drosophila melanogaster optic lobe. SNS-Toolbox, as well as the code to generate all of the figures in this work, is located at https://github.com/wnourse05/SNS-Toolbox.

This work was funded by National Science Foundation (NSF) Award #1704436, as well as by NSF DBI 2015317 as part of the NSF/CIHR/DFG/FRQ/UKRI-MRC Next Generation Networks for Neuroscience Program.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lava software framework (2021)

    Google Scholar 

  2. Beer, R.D., Gallagher, J.C.: Evolving dynamical neural networks for adaptive behavior. Adapt. Behav. 1, 91–122 (1992)

    Article  Google Scholar 

  3. Borst, A.: Drosophila’s view on insect vision. Curr. Biol. 19, R36–R47 (2009)

    Google Scholar 

  4. Clark, D.A., Demb, J.B.: Parallel computations in insect and mammalian visual motion processing. Curr Biol. 24 (20), R1062–R1072 (2016)

    Google Scholar 

  5. Cofer, D., et al.: A 3D graphics environment for neuromechanical simulations. J. Neurosci. Methods 187, 280–288 (2010)

    Google Scholar 

  6. Cohen, G.: Gooaall!!!: Why we built a neuromorphic robot to play foosball. IEEE Spect. 59, 44–50 (3 2022)

    Google Scholar 

  7. Eliasmith, C., Anderson, C.H.: Neural Engineering: Computation, Representation, and Dynamics in Neurobiological Systems. MIT Press (2003)

    Google Scholar 

  8. Eshraghian, J.K., et al.: Training spiking neural networks using lessons from deep learning (2021)

    Google Scholar 

  9. Falotico, E., et al.: Connecting artificial brains to robots in a comprehensive simulation framework: the neurorobotics platform. Front. Neurorobot. 11, 2 (2017)

    Google Scholar 

  10. Freifeld, L., Clark, D.A., Schnitzer, M.J., Horowitz, M.A., Clandinin, T.R.: Gabaergic lateral interactions tune the early stages of visual processing in drosophila. Neuron 78, 1075–1089 (2013)

    Google Scholar 

  11. Goldsmith, C.A., Szczecinski, N.S., Quinn, R.D.: Neurodynamic modeling of the fruit fly Drosophila melanogaster. Bioinspir. Biomimet. 15, 065003 (2020)

    Google Scholar 

  12. Harris, C.R., et al.: Array programming with numpy. Nature 585(7825), 357–362 (2020)

    Google Scholar 

  13. Hines, M.L., Carnevale, N.T.: Neuron: a tool for neuroscientists. Neuroscientist 7(2), 123–135 (2001). http://www.neu

  14. Hunt, A., Szczecinski, N., Quinn, R.: Development and training of a neural controller for hind leg walking in a dog robot. Front. Neurorobot. 11 (2017)

    Google Scholar 

  15. Kulkarni, S.R., Parsa, M., Mitchell, J.P., Schuman, C.D.: Benchmarking the performance of neuromorphic and spiking neural network simulators. Neurocomputing 447, 145–160 ( 2021)

    Google Scholar 

  16. Kumar, J.P.: Building an ommatidium one cell at a time. Dev. Dyn. 241(1), 136-149 (2012)

    Google Scholar 

  17. Mozafari, M., Ganjtabesh, M., Nowzari-Dalini, A., Masquelier, T.: Spyketorch: efficient simulation of convolutional spiking neural networks with at most one spike per neuron. Front. Neurosci. 13 (2019)

    Google Scholar 

  18. Paszke, A., et al.: PyTorch: An Imperative style, high-performance deep learning library. In: NIPS’19: Proceedings of the 33rd International Conference on Neural Information Processing Systems. Curran Associates, Inc. (2019)

    Google Scholar 

  19. Sedlackova, A., Szczecinski, N.S., Quinn, R.D.: A synthetic nervous system model of the insect optomotor response. In: Living Machines 2020. LNCS (LNAI), vol. 12413, pp. 312–324. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64313-3_30

    Chapter  Google Scholar 

  20. Strohmer, B., Manoonpong, P., Larsen, L.B.: Flexible spiking CPGs for online manipulation during hexapod walking. Front. Neurorobot. 14 (2020)

    Google Scholar 

  21. Szczecinski, N.S., Hunt, A.J., Quinn, R.D.: A functional subnetwork approach to designing synthetic nervous systems that control legged robot locomotion. Front. Neurorobot. 11 (2017)

    Google Scholar 

  22. Szczecinski, N.S., Quinn, R.D., Hunt, A.J.: Extending the functional subnetwork approach to a generalized linear integrate-and-fire neuron model. Front. Neurorobot. 14 (2020)

    Google Scholar 

  23. Werbos, P.J.: Bacpropagation through time: what it does and how to do it. In: Proceedings of the IEEE 78 (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William R. P. Nourse .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nourse, W.R.P., Szczecinski, N.S., Quinn, R.D. (2022). SNS-Toolbox: A Tool for Efficient Simulation of Synthetic Nervous Systems. In: Hunt, A., et al. Biomimetic and Biohybrid Systems. Living Machines 2022. Lecture Notes in Computer Science(), vol 13548. Springer, Cham. https://doi.org/10.1007/978-3-031-20470-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20470-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20469-2

  • Online ISBN: 978-3-031-20470-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics