Skip to main content

Application-Oriented Comparison of Two 3D Printing Processes for the Manufacture of Pneumatic Bending Actuators for Bioinspired Macroscopic Soft Gripper Systems

  • Conference paper
  • First Online:
Biomimetic and Biohybrid Systems (Living Machines 2022)

Abstract

Soft robotic systems are ideally suited for adaptive bioinspired grippers due to their intrinsic properties. The advent of flexible 3D printing materials has made soft robotic actuator designs that were previously difficult or impossible to produce now implementable. In this study, we present an application-oriented comparison of the suitability for the printing of pneumatic actuators of two state-of-the-art 3D printing processes for flexible material, fused deposition modeling (FDM) and material jetting (PolyJet). While the FDM method affects the actuator designs, e.g., by the lack of practicable support material for flexible materials and its nozzle size, PolyJet uses support material but requires a design that allows the removal of it afterward. To compare how the two 3D printer technologies are suited for fabricating bending actuators, we have developed a pneumatic mono-material bending actuator that meets the design requirements to be printed with both printers. The design process itself and the characterization by bending angle and torque provided information about which design concepts could be better implemented with which method. The PolyJet process seems more suited for pneumatic actuators with large chambers and complex overhangs that show a sensitive response in the bending angle, but have low robustness. In contrast, the FDM method appears more suited for actuators with small chambers and complex geometries that feature high robustness and higher absolute tip force. These results form the basis for translating new inspirations from the elastic movements of living nature into our actuators by fully exploiting the advantages of each additive manufacturing process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kovacs, G., Düring, L., Michel, S., Terrasi, G.: Stacked dielectric elastomer actuator for tensile force transmission. Sens. Actuators, A 155, 299–307 (2009). https://doi.org/10.1016/j.sna.2009.08.027

    Article  Google Scholar 

  2. Wani, O.M., Zeng, H., Priimagi, A.: A light-driven artificial flytrap. Nat. Commun. 8, 15546 (2017). https://doi.org/10.1038/ncomms15546

    Article  Google Scholar 

  3. Kim, S., Laschi, C., Trimmer, B.: Soft robotics: a bioinspired evolution in robotics. Trends Biotechnol. 31(5), 287–294 (2013). https://doi.org/10.1016/j.tibtech.2013.03.002

    Article  Google Scholar 

  4. Wei, Y., et al.: A novel, variable stiffness robotic gripper based on integrated soft actuating and particle jamming. Soft Rob. 3(3), 134–143 (2016). https://doi.org/10.1089/soro.2016.0027

    Article  Google Scholar 

  5. Sun, Y., Liu, Y., Lueth, T.C.: Optimization of stress distribution in tendon-driven continuum robots using fish-tail-inspired method. IEEE Robot. Autom. Lett. 7(2), 3380–3387 (2022). https://doi.org/10.1109/LRA.2022.3147456

    Article  Google Scholar 

  6. Wehner, M., et al.: An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature 536(7617), 451–455 (2016). https://doi.org/10.1038/nature19100

    Article  Google Scholar 

  7. Gorissen, B., Reynaerts, D., Konishi, S., Yoshida, K., Kim, J.-W., Volder, M.: Elastic inflatable actuators for soft robotic applications. Adv. Mater. 29, 1604977 (2017). https://doi.org/10.1002/adma.201604977

    Article  Google Scholar 

  8. Sun, T., Chen, Y., Han, T., Jiao, C., Lian, B., Song, Y.: A soft gripper with variable stiffness inspired by pangolin scales, toothed pneumatic actuator and autonomous controller. Robot. Comput. Integr. Manuf. 61(2020), 101848 (2020). https://doi.org/10.1016/j.rcim.2019.101848

    Article  Google Scholar 

  9. Esser, F., Steger, T., Bach, D., Masselter, T., Speck, T.: Development of novel foam-based soft robotic ring actuators for a biomimetic peristaltic pumping system. In: Mangan, M., Cutkosky, M., Mura, A., Verschure, P.F.M.J., Prescott, T., Lepora, N. (eds.) Living Machines 2017. LNCS (LNAI), vol. 10384, pp. 138–147. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63537-8_12

    Chapter  Google Scholar 

  10. Esser, F., Krüger, F., Masselter, T., Speck, T.: Development and characterization of a novel biomimetic peristaltic pumping system with flexible silicone-based soft robotic ring actuators. In: Vouloutsi, V., Halloy, J., Mura, A., Mangan, M., Lepora, N., Prescott, T.J., Verschure, P.F.M.J. (eds.) Living Machines 2018. LNCS (LNAI), vol. 10928, pp. 157–167. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95972-6_17

    Chapter  Google Scholar 

  11. Esser, F., Krüger, F., Masselter, T., Speck, T.: Characterization of biomimetic peristaltic pumping system based on flexible silicone soft robotic actuators as an alternative for technical pumps. In: Martinez-Hernandez, U., et al. (eds.) Biomimetic and Biohybrid Systems: 8th International Conference, Living Machines 2019, Nara, Japan, proceedings, vol. 11556, pp. 101–113. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24741-6_9

    Chapter  Google Scholar 

  12. Agerholm, M., Lord, A.: The “artificial muscle” of McKibben. The Lancet 277(7178), 660–661 (1961). https://doi.org/10.1016/S0140-6736(61)91676-2

    Article  Google Scholar 

  13. Schulte, Jr. H.F.: The characteristics of the McKibben artificial muscle. The application of external power in prosthetics and orthotics, pp. 94–115. National Academy of Sciences - National Research Council, Washington, DC (1961)

    Google Scholar 

  14. Temirel, M., Yenilmez, B., Knowlton, S., Walker, J., Joshi, A., Tasoglu, S.: Three-dimensional-printed carnivorous plant with snap trap. 3D Printing Addit. Manuf. 3(4), 244–251 (2016). https://doi.org/10.1089/3dp.2016.0036

    Article  Google Scholar 

  15. Schaffner, M., Faber, J.A., Pianegonda, L., Rühs, P.A., Coulter, F., Studart, A.R.: 3D printing of robotic soft actuators with programmable bioinspired architectures. Nat. Commun. 9(1), 878 (2018). https://doi.org/10.1038/s41467-018-03216-w

    Article  Google Scholar 

  16. Geer, R., Iannucci, S., Li, S.: Pneumatic coiling actuator inspired by the awns of Erodium cicutarium. Front. Robot. AI 7(7), 17 (2020). https://doi.org/10.3389/frobt.2020.00017

    Article  Google Scholar 

  17. Ilievski, F., Mazzeo, A.D., Shepherd, R.F., Chen, X., Whitesides, G.M.: Soft robotics for chemists. Angew. Chem. 123(8), 1930–1935 (2011). https://doi.org/10.1002/ange.201006464

    Article  Google Scholar 

  18. Demir, K.G., Zhang, Z., Yang, J., Gu, G.X.: Computational and experimental design exploration of 3D-printed soft pneumatic actuators. Adv. Intell. Syst. 2(7), 2070072 (2020). https://doi.org/10.1002/aisy.202070072

    Article  Google Scholar 

  19. Polygerinos, P., et al.: Towards a soft pneumatic glove for hand rehabilitation. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1512–1517. IEEE, Tokyo, Japan (2013). https://doi.org/10.1109/IROS.2013.6696549

  20. Herianto, W.I., Ritonga, A.S., Prastowo, A.: Design and fabrication in the loop of soft pneumatic actuators using fused deposition modelling. Sens. Actuator A Phys. 298, 111556 (2019). https://doi.org/10.1016/j.sna.2019.111556

    Article  Google Scholar 

  21. Hu, W., Alici, G.: Bioinspired three-dimensional-printed helical soft pneumatic actuators and their characterization. Soft Rob. 7(3), 267–282 (2020). https://doi.org/10.1089/soro.2019.0015

    Article  Google Scholar 

  22. Moseley, P., Florez, J.M., Sonar, H.A., Agarwal, G., Curtin, W., Paik, J.: Modeling, design, and development of soft pneumatic actuators with finite element method. Adv. Eng. Mater. 18(6), 978–988 (2016). https://doi.org/10.1002/adem.201500503

    Article  Google Scholar 

  23. Sun, Y., Song, Y.S., Paik, J.: Characterization of silicone rubber based soft pneumatic actuators. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4446–4453. IEEE (2013). https://doi.org/10.1109/IROS.2013.6696995

  24. Sun, Y., et al.: Stiffness customization and patterning for property modulation of silicone-based soft pneumatic actuators. Soft Rob. 4(3), 251–260 (2017). https://doi.org/10.1089/soro.2016.0047

    Article  Google Scholar 

  25. Rus, D., Tolley, M.T.: Design, fabrication and control of soft robots. Nature 521(7553), 467–475 (2015). https://doi.org/10.1038/nature14543

    Article  Google Scholar 

  26. Wallin, T.J., Pikul, J., Shepherd, R.F.: 3D printing of soft robotic systems. Nat. Rev. Mater. 3(6), 84–100 (2018). https://doi.org/10.1038/s41578-018-0002-2

    Article  Google Scholar 

  27. Keneth, E.S., Kamyshny, A., Totaro, M., Beccai, L., Magdassi, S.: 3D Printing materials for soft robotics. Adv. Mater. Spec. Issue: Soft Robot. 33(19), 2003387 (2021). https://doi.org/10.1002/adma.202003387

    Article  Google Scholar 

  28. Tebyani, M., et al.: 3D Printing an assembled biomimetic robotic finger. In: 2020 17th International Conference on Ubiquitous Robots (UR), pp. 526–532. IEEE (2020). https://doi.org/10.1109/UR49135.2020.9144774

  29. Shih, B., et al.: Design considerations for 3D printed, soft, multimaterial resistive sensors for soft robotics. Front. Robot. AI 6, 30 (2019). https://doi.org/10.3389/frobt.2019.00030

    Article  Google Scholar 

  30. Conrad, S., Speck, T., Tauber, F.J.: Multi-material 3D-printer for rapid prototyping of bio-inspired soft robotic elements. In: Vouloutsi, V., Mura, A., Tauber, F.J., Speck, T., Prescott, T.J., Verschure, P.F.M.J. (eds.) Biomimetic and Biohybrid Systems: Living Machines 2020. Lecture Notes in Computer Science(), vol. 12413, pp. 46–54. Springer, Cham. (2020). https://doi.org/10.1007/978-3-030-64313-3_6

    Chapter  Google Scholar 

  31. Conrad, S., Speck, T., Tauber, F.J.: Tool changing 3D printer for rapid prototyping of advanced soft robotic elements. Bioinspir. Biomim. 16(5), 055010 (2021). https://doi.org/10.1088/1748-3190/ac095a

    Article  Google Scholar 

  32. Low, Z.-X., Chua, Y.T., Ray, B.M., Mattia, D., Metcalfe, I.S., Patterson, D.A.: Perspective on 3D printing of separation membranes and comparison to related unconventional fabrication techniques. J. Membr. Sci. 523, 596–613 (2017). https://doi.org/10.1016/j.memsci.2016.10.006

    Article  Google Scholar 

  33. Kluska, E., Gruda, P., Majca-Nowak, N.: The Accuracy and the printing resolution comparison of different 3D printing technologies. Trans. Aerosp. Res. 3(252), 69–86 (2018). https://doi.org/10.2478/tar-2018-0023

    Article  Google Scholar 

  34. Maurya, N.K., Rastogi, V., Singh, P.: Comparative study and measurement of form errors for the component printed by FDM and PolyJet process. Instrum. Mesure Métrologie 18(4), 353–359 (2019). https://doi.org/10.18280/i2m.180404

    Article  Google Scholar 

  35. Lee, K.-Y., et al.: Accuracy of three-dimensional printing for manufacturing replica teeth. Korean J. Orthod. 45(5), 217–225 (2015). https://doi.org/10.4041/kjod.2015.45.5.217

    Article  Google Scholar 

  36. Dorweiler, B., Baqué, P.E., Chaban, R., Ghazy, A., Salem, O.: Quality control in 3D printing: accuracy analysis of 3D-printed models of patient-specific anatomy. Materials 14(4), 1021 (2021). https://doi.org/10.3390/ma14041021

    Article  Google Scholar 

  37. Yap, Y.L., Sing, S.L., Yeong, W.Y.: A review of 3D printing processes and materials for soft robotics. RPJ 26(8), 1345–1361 (2020). https://doi.org/10.1108/RPJ-11-2019-0302

    Article  Google Scholar 

  38. Bass, L., Meisel, N.A., Williams, C.B.: Exploring variability of orientation and aging effects in material properties of multi-material jetting parts. Rapid Prototyping J. 22, 826–834 (2016). https://doi.org/10.1108/RPJ-11-2015-0169

    Article  Google Scholar 

  39. Zatopa, A., Walker, S., Menguc, Y.: Fully soft 3D-printed electroactive fluidic valve for soft hydraulic robots. Soft Rob. 5(3), 258–271 (2018). https://doi.org/10.1089/soro.2017.0019

    Article  Google Scholar 

  40. Bartlett, N.W., et al.: A 3D-printed, functionally graded soft robot powered by combustion. Science 349(6244), 161–165 (2015). https://doi.org/10.1126/science.aab0129

    Article  Google Scholar 

  41. Zhang, Y.-F., et al.: Fast-response, stiffness-tunable soft actuator by hybrid multimaterial 3D printing. Adv. Func. Mater. 29(15), 1806698 (2019). https://doi.org/10.1002/adfm.201806698

    Article  Google Scholar 

Download references

Funding

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy – EXC-2193/1-390951807.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Falk J. Tauber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kappel, P., Kramp, C., Speck, T., Tauber, F.J. (2022). Application-Oriented Comparison of Two 3D Printing Processes for the Manufacture of Pneumatic Bending Actuators for Bioinspired Macroscopic Soft Gripper Systems. In: Hunt, A., et al. Biomimetic and Biohybrid Systems. Living Machines 2022. Lecture Notes in Computer Science(), vol 13548. Springer, Cham. https://doi.org/10.1007/978-3-031-20470-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20470-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20469-2

  • Online ISBN: 978-3-031-20470-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics