Skip to main content

Artificial Intelligence Based Plastic Injection Process for Initial Parameters Setting and Process Monitoring-Review

  • Conference paper
  • First Online:
Smart Applications and Data Analysis (SADASC 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1677))

Included in the following conference series:

Abstract

The thermoplastic injection process is an industrial technique that allows getting a high precision plastics part with high production rate. This process is considered one of the most complexes in the plastic industry due to its complexity and variability. The main problems in this technique can occur during two phases: first, during the initial setting when we try to identify the initial parameters for a new plastic part; and second, during mass production when there is a deviation in the production process. The purpose of this article is divided on three parts: first, is to make a basic review and to present overview of the main issues faced in this process, second part, is to present the contribution of the artificial intelligence methods to resolve this issues and finally to present a general guidelines for future researchers to resolve or reduce the process issues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Presses à injecter - Fonctions et solutions constructives : Dossier complet | Techniques de l’Ingénieur. https://www.techniques-ingenieur.fr/base-documentaire/materiaux-th11/procedes-d-injection-des-thermoplastiques-42151210/presses-a-injecter-am3671/. Last Accessed 24 June 2021

  2. Presses à injecter - Caractéristiques et architecture : Dossier complet | Techniques de l’Ingénieur. https://www.techniques-ingenieur.fr/base-documentaire/materiaux-th11/procedes-d-injection-des-thermoplastiques-42151210/presses-a-injecter-am3672/. Last Accessed 24 June 2021

  3. Extrusion - Extrusion monovis (partie 1) : Dossier complet | Techniques de l’Ingénieur. https://www.techniques-ingenieur.fr/base-documentaire/materiaux-th11/plasturgie-procedes-d-extrusion-42150210/extrusion-am3650. Last Accessed 24 June 2021

  4. Pham, T.L.: Plastification en injection des polymères fonctionnels et chargés. Matériaux. INSA de Lyon. Français (2013). NNT: 2013ISAL0093. tel-01015839

    Google Scholar 

  5. Pichon, J.-F., Guichou, C.: Aide-memoire-injection-des-matieres-plastiques/. L'Usine Nouvelle, Dunod, Paris (2015)

    Google Scholar 

  6. Biron, M.: Aide-mémoire - Transformation des matières plastiques. Dunod, Paris (2010)

    Google Scholar 

  7. Bharti, P.K., Khan, M.I.: Recent methods for optimization of plastic injection molding process – a retrospective and literature review. Int. J. Eng. Sci. Technol. 2 (2010)

    Google Scholar 

  8. F. Tayalati, M. Azmani, A. Azmani, Problème de réglage initial dans le procédé de l'injection des matières thermoplastiques. In: 9ème Edition du Congrès Scientifique International en management et ingenierie des systèmes, École des mines, Rabat, Maroc (2021)

    Google Scholar 

  9. Nagorny, P., Pairel, E., Pillet, M.: Pilotage en Injection Plastique – Etat de l’Art. In: 12èmeCongrès International de Génie Industriel (CIGI 2017). Compiègne, France (May 2017). hal-01551840

    Google Scholar 

  10. Selvaraj, S.K., Raj, A., Rishikesh Mahadevan, R., Chadha, U., Paramasivam, V.: A review on machine learning models in injection molding machines. Hindawi. Adv. Mater. Sci. Eng. 2022, 28. Article ID 1949061 (2022)

    Google Scholar 

  11. Mathivanan, D., Parthasarathy, N.S.: Prediction of sink depths using nonlinear modeling of injection molding variables. Int. J. Adv. Manuf. Technol. 43(7–8) (août 2009). https://doi.org/10.1007/s00170-008-1749-1

  12. Béreaux, Y., Moguedet, M., Raoul, X., Charmeau, J.Y., Balcaen, J., Graebling, D.: Series solutions for viscous and viscoelastic fluids flow in the helical rectangular channel of an extruder screw. J. Non-Newton. Fluid Mech. 123(2–3), 237–257 (November 2004). https://doi.org/10.1016/j.jnnfm.2004.08.011

  13. Bereaux, Y.: Procédés de Plasturgie: Approche par des modèles numériques, thermiques et mécaniques. Mécanique des matériaux [physics.class-ph]. INSA de Lyon (2012)

    Google Scholar 

  14. Chiu, C.-P., Shih, L.-C., Wei, J.-H.: Dynamic modeling of the mold filling process in an injection molding machine. Polym. Eng. Sci. 31(19), 1417–1425 (October 1991)

    Google Scholar 

  15. Mohamed Yusoff, S.M., Rohani, J.M., Hamid, W.H.W., Ramly, E.: A plastic injection molding process characterization using experimental design technique: a case study. J. Teknol., févr. 41 (2012)

    Google Scholar 

  16. Packianather, M., Chan, F., Griffiths, C., Dimov, S., Pham, D.T.: Optimisation of micro injection moulding process through design of experiments. Procedia CIRP. 12 (2013)

    Google Scholar 

  17. Schnerr-Haselbarth, O., Michaeli, W.: Automation of online quality control in injection moulding. Macromol. Mater. Eng.. 284/285, 81 (2000)

    Google Scholar 

  18. Pastré, P., Parage, P., Richard, J.-F., Sander, E., Labat, J.-M., Futtersack, M.: La résolution de problèmes professionnels sur simulateur. Activites. 06(1) (avr. 2009)

    Google Scholar 

  19. Jan, T.-C.: Expert system for the injection molding of engineering thermoplastics, A Dissertation Submitted to the Faculty of New Jersey Institute of Technology in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Department of Mechanical and Industrial Engineering (October 1992)

    Google Scholar 

  20. Shelesh-Nezhada, K., Sioresb, E.: An intelligent system for plastic injection molding process design. J. Mater. Process. Technol. 63(1–3) (January 1997)

    Google Scholar 

  21. Kazmer, D., Westerdale, S., Hazen, D.: A comparison of statistical process control (SPC) and on-line multivariate analyses (MVA) for injection molding. Business Int. Polym. Process. 23 (November 2008)

    Google Scholar 

  22. Zhang, S., Dubay, R., Charest, M.: A principal component analysis model-based predictive controller for controlling part warpage in plastic injection molding. Exp. Syst. Appl. 42(6) (15 April 2015)

    Google Scholar 

  23. Lau, H.C.W., Ning, A., Pun, K.F., Chin, K.S.: Neural networks for the dimensional control of molded parts based on reverse process model. J. Mater. Process. Technol. 117(1/2) (November 2001)

    Google Scholar 

  24. Mok, S.L., Kwong, C.K., Lau, W.S.: An intelligent hybrid system for initial process parameter setting of injection moulding. Int. J. Prod. Res. 38(17), 4565–4576 (2000)

    Google Scholar 

  25. Kashyap, S., Datta, D.: Process parameter optimization of plastic injection molding: a review. Int. J. Plast. Technol. 19(1), 1–18 (2015). https://doi.org/10.1007/s12588-015-9115-2

    Article  Google Scholar 

  26. Oktem, H., Erzurumlu, T., Uzman, I.: Application of Taguchi optimization technique in determining plastic injection molding process parameters for a thin-shell part. Mater. Des. 28(4), 1271–1278 (January 2007)

    Google Scholar 

  27. Yarlagadda, P.K.D.V., Teck Khong, C.A.: Development of a hybrid neural network system for prediction of process parameters in injection moulding. J. Mater. Process. Technol. 118(1–3), 109–115 (Décember 2001)

    Google Scholar 

  28. Annicchiarico, D., Alcock. J.R.: Review of factors that affect shrinkage of molded part in injection molding. Mater. Manufact. Process. 2 (June 2014)

    Google Scholar 

  29. Ozcelik, B., Ozbay, A., Demirbas, E.: Influence of injection parameters and mold materials on mechanical properties of ABS in plastic injection molding. Int. Commun. Heat Mass Transf. 37(9), 1359–1365 (November 2010)

    Google Scholar 

  30. Shen, C., Wang, L., Li, Q.: Optimization of injection molding process parameters using combination of artificial neural network and genetic algorithm method. J. Mater. Process. Technol. 183(2–3), 412–418 (Mars 2007)

    Google Scholar 

  31. Khosravani, M.R., Nasiri, S.: Injection molding manufacturing process: review of case-based reasoning applications. J. Intell. Manuf. 31(4), 847–864 (avr. 2020)

    Google Scholar 

  32. Mikos, W.L., Ferreira, J.C.E., Gomes, F.G.C.: A distributed system for rapid determination of nonconformance causes and solutions for the thermoplastic injection molding process: a case-based reasoning agents approach. In: IEEE International Conference on Automation Science and Engineering (2011)

    Google Scholar 

  33. Lee, H., Liau, Y., Ryu, K.: Real-time parameter optimization based on neural network for smart injection molding. In: IOP Conference Series: Materials Science and Engineering, Volume 324, 2017 the 5th International Conference on Mechanical Engineering, Materials Science and Civil Engineering 15–16 December 2017, Kuala Lumpur, Malaysia

    Google Scholar 

  34. Wunck, C.: Implementation of mobile event monitoring agents for manufacturing execution and intelligence systems using a domain specific language. In: Proceedings - International Conference on Industrial Engineering and Operations Management, Kuala Lumpur, Malaysia, March 8–10, 2016

    Google Scholar 

  35. Abdul, R., Guo, G., Chen, J.C., Yoo, J.-W.: Shrinkage prediction of injection molded high density polyethylene parts with taguchi/artificial neural network hybrid experimental design. Int. J. Interact. Design Manuf. 14(2), 345–357 (2019). https://doi.org/10.1007/s12008-019-00593-4

    Article  Google Scholar 

  36. Nagorny, P., Pillet, M., Pairel, E.: Contrôle Qualité 2.0: Apprentissage supervisé de la notion de Qualité, application à l’injection plastique. CIGI-QUALITA 2019, École de Technologie Supérieure de Montréal, Montréal, Canada, June 2019. ⟨hal-02142331⟩

    Google Scholar 

  37. Heinisch, J., Hopmann, C.: Comparison of design of experiment methods for modeling injection molding experiments using artificial neural networks. J. Manuf. Process. 61, 357–368 (January 2021)

    Google Scholar 

  38. Sadeghi, B.H.M.: A BP-neural network predictor model for plastic injection molding process. J. Mater. Process. Technol. 103(3), 411–416 (juill. 2000)

    Google Scholar 

  39. Tercan, H., Guajardo, A., Heinisch, J., Thiele, T., Hopmann, C., Meisen, T.: Transfer-learning: bridging the gap between real and simulation data for machine learning in injection molding. Procedia CIRP 72, 185–190 (2018)

    Article  Google Scholar 

  40. Ogorodnyk, O., Lyngstad, O.V., Larsen, M., Wang, K., Martinsen, K.: Application of machine learning methods for prediction of parts quality in thermoplastics injection molding. In: Wang, K., Wang, Y., Strandhagen, J.O., Yu, T. (eds.) Advanced Manufacturing and Automation VIII, vol. 484. Springer Singapore, Singapore (2019)

    Google Scholar 

  41. Charest, M., Finn, R., Dubay, R.: Integration of artificial intelligence in an injection molding process for on-line process parameter adjustment. In: 2018 Annual IEEE International Systems Conference (SysCon), Vancouver, BC (avr. 2018)

    Google Scholar 

  42. Park, H.S., Phuong, D.X., Kumar, S.: AI based injection molding process for consistent product quality. Procedia Manuf. 28, 102–106 (2019)

    Article  Google Scholar 

  43. Lockner, Y., Hopmann, C.: Induced network-based transfer learning in injection molding for process modelling and optimization with artificial neural networks. Int. J. Adv. Manuf. Technol. 112(11–12), 3501–3513 (févr. 2021)

    Google Scholar 

  44. Meiabadia, M.S., Vafaeesefatb, A., Sharifi, F.: Optimization of plastic injection molding process by combination of artificial neural network and genetic algorithm. J. Optimiz. Ind. Eng. 13 (2013)

    Google Scholar 

  45. Nyanga, L., et al.: Design of a multi agent system for machine selection. In: Competitive Manufacturing, International Conference on Competitive Manufacturing (COMA ‘16), 27–29 January 2016, Stellenbosch, Stellenbosch University, South Africa (2016)

    Google Scholar 

Download references

Acknowledgments

This research is supported by the Ministry of Higher Education, Scientific Research and Innovation, the Digital Development Agency and the National Center for Scientific and Technical Research of Morocco (Smart DLSP Project - AL KHAWARIZMI IA-PROGRAM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faouzi Tayalati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tayalati, F., Azmani, M., Azmani, A. (2022). Artificial Intelligence Based Plastic Injection Process for Initial Parameters Setting and Process Monitoring-Review. In: Hamlich, M., Bellatreche, L., Siadat, A., Ventura, S. (eds) Smart Applications and Data Analysis. SADASC 2022. Communications in Computer and Information Science, vol 1677. Springer, Cham. https://doi.org/10.1007/978-3-031-20490-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20490-6_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20489-0

  • Online ISBN: 978-3-031-20490-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics