Skip to main content

Spectral Clustering Based on a Graph Model for Airspace Sectorization

  • Conference paper
  • First Online:
Smart Applications and Data Analysis (SADASC 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1677))

Included in the following conference series:

  • 435 Accesses

Abstract

This paper focuses on exploring the usage of clustering techniques to form new sector designs conforming to the constraints imposed by the problem. As an initial step we generate DBSCAN clusters based on the sector’s geographical points for analyzing the structural design of the airspace. As a second step, we form a graph model through the Voronoi Diagram to generate sites for each sector. Next, we transform the diagram into a Delaunay Triangulation. For the weighted graph model, we use two main metrics: the traffic flow and the number of intersections on each link. For the final step, we analyze spectral clustering on sectors to test how suitable the results are via convex bounding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry–Algorithms and Applications, 3rd Ed. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-77974-2

  2. Chen, Y., Zhang, D.: Dynamic airspace configuration method based on a weighted graph model. Chin. J. Aeronaut 27(4), 903–912 (2014). https://doi.org/10.1016/J.CJA.2014.06.009

  3. Delahaye, D., Schoenauer, M., Alliot, J.M.: Airspace sectoring by evolutionary computation. In: 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No. 98TH8360), pp. 218–223 IEEE (1998)

    Google Scholar 

  4. Eurocontrol: workload calculation and Determination of Capacity with RAMS 1 ATC TASKS. Tech. rep. Eurocontrol (2006)

    Google Scholar 

  5. Eurocontrol: SESAR (2022). http://www.sesar.eu/

  6. Federal Aviation Administration: NextGen Annual Report. Tech. rep. FAA (2020). https://www.faa.gov/nextgen/media/NextGenAnnualReport-FiscalYear2020.pdf

  7. Gerdes, I., Temme, A., Schultz, M.: From free-route air traffic to an adapted dynamic main-flow system. Transp. Res. Part C: Emerg. Technol. 115, 102633 (2020)

    Article  Google Scholar 

  8. Han, S.C., Zhang, M.: The optimization method of the sector partition based on metamorphic voronoi polygon. Chin. J. Aeronaut. 17(1), 7–12 (2004)

    Article  Google Scholar 

  9. ICAO: Doc 4444, Air Traffic Management. Tech. rep. ICAO (2016). https://ops.group/blog/wp-content/uploads/2017/03/ICAO-Doc4444-Pans-Atm-16thEdition-2016-OPSGROUP.pdf

  10. Li, J., Wang, T., Savai, M., Hwang, I.: Graph-Based Algorithm for Dynamic Airspace Configuration. J. Guidance Control Dyn. 33(4), 1082–1094 (2010). https://doi.org/10.2514/1.47720

  11. Sergeeva, M.: Automated airspace sectorization by genetic algorithm, Ph. D. thesis, Université Paul Sabatier (Toulouse 3) (2017)

    Google Scholar 

  12. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000). https://doi.org/10.1109/34.868688

    Article  Google Scholar 

  13. Trandac, H., Baptiste, P., Duong, V.: Airspace Sectorization Constraints. RAIRO-Oper. Res. 39(2), 105–122 (2005)

    Google Scholar 

  14. Von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17(4), 395–416 (2007). https://doi.org/10.1007/s11222-007-9033-z. https://arxiv.org/abs/0711.0189v1

  15. Xue, M.: Airspace sector redesign based on voronoi diagrams. In: AIAA Guidance, Navigation and Control Conference and Exhibit 18–21 August 2008, Honolulu, Hawaii AIAA AIAA, pp. 2008–7223 (2008)

    Google Scholar 

  16. Ye, Z., Kong, F., Zhang, B., Gao, W., Mao, J.: A method framework for automatic airspace reconfiguration-monte Carlo method for eliminating irregular sector shapes generated by region growth method. Sensors 19(18), 3934 (2019)

    Article  Google Scholar 

  17. Yousefi, A., Donohue, G.: Temporal and spatial distribution of airspace complexity for air traffic controller workload-based sectorization. In: AIAA 4th Aviation Technology, Integration and Operations (ATIO) forum, p. 6455 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zineb Hidila .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hidila, Z., Loukmane, A., Rahali, N., Mestari, M. (2022). Spectral Clustering Based on a Graph Model for Airspace Sectorization. In: Hamlich, M., Bellatreche, L., Siadat, A., Ventura, S. (eds) Smart Applications and Data Analysis. SADASC 2022. Communications in Computer and Information Science, vol 1677. Springer, Cham. https://doi.org/10.1007/978-3-031-20490-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20490-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20489-0

  • Online ISBN: 978-3-031-20490-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics