Abstract
The movie description task aims to generate narrative textual descriptions that match the content of the movie. Most of the current methods lack the ability to consider comprehensive visual content analysis and contextual information utilization simultaneously, resulting in inaccurate or incoherent in the generated descriptions. In order to tackle the problem, we propose a new method called spatial-temporal contextual feature fusion network (ST-CFFNet) to capture both spatial-temporal and contextual information in movie by building the stacked visual graph attention encoding unit and the contextual feature fusion module. We also propose a spatial-temporal context loss to constrain the effectiveness of ST-CFFNet in spatial-temporal relation analysis and context modeling. The experimental results on LSMDC dataset show that our method achieves more accurate and coherent movie descriptions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Banerjee, S., Lavie, A.: Meteor: an automatic metric for MT evaluation with improved correlation with human judgments. In: Proceedings of the ACL Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization, pp. 65–72 (2005)
Carreira, J., Zisserman, A.: Quo vadis, action recognition? A new model and the kinetics dataset. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6299–6308 (2017)
Gao, L., Li, X., Song, J., Shen, H.T.: Hierarchical LSTMs with adaptive attention for visual captioning. IEEE Trans. Pattern Anal. Mach. Intell. 42(5), 1112–1131 (2019)
Han, S.H., Go, B.W., Choi, H.J.: Multiple videos captioning model for video storytelling. In: 2019 IEEE International Conference on Big Data and Smart Computing (BigComp), pp. 1–4. IEEE (2019)
Karpathy, A., Fei-Fei, L.: Deep visual-semantic alignments for generating image descriptions. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3128–3137 (2015)
Kay, W., et al.: The kinetics human action video dataset. arXiv preprint arXiv:1705.06950 (2017)
Lin, C.Y.: Rouge: a package for automatic evaluation of summaries. In: Text Summarization Branches Out, pp. 74–81 (2004)
Mahajan, Dhruv, Girshick, Ross, Ramanathan, Vignesh, He, Kaiming, Paluri, Manohar, Li, Yixuan, Bharambe, Ashwin, van der Maaten, Laurens: Exploring the limits of weakly supervised pretraining. In: Ferrari, Vittorio, Hebert, Martial, Sminchisescu, Cristian, Weiss, Yair (eds.) ECCV 2018. LNCS, vol. 11206, pp. 185–201. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01216-8_12
Mi, L., Chen, Z.: Hierarchical graph attention network for visual relationship detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13886–13895 (2020)
Pan, P., Xu, Z., Yang, Y., Wu, F., Zhuang, Y.: Hierarchical recurrent neural encoder for video representation with application to captioning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1029–1038 (2016)
Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., et al.: Language models are unsupervised multitask learners. OpenAI blog 1(8), 9 (2019)
Rohrbach, A., Rohrbach, M., Tandon, N., Schiele, B.: A dataset for movie description. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3202–3212 (2015)
Rohrbach, A., et al.: Movie description. Int. J. Comput. Vision 123(1), 94–120 (2017)
Ronfard, R., Thuong, T.: A framework for aligning and indexing movies with their script. In: 2003 Proceedings of International Conference on Multimedia and Expo. ICME 2003 (Cat. No. 03TH8698), vol. 1, pp. 1–21 (2003). https://doi.org/10.1109/ICME.2003.1220844
Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph neural network model. IEEE Trans. Neural Netw. 20(1), 61–80 (2008)
Shetty, R., Laaksonen, J.: Video captioning with recurrent networks based on frame-and video-level features and visual content classification. arXiv preprint arXiv:1512.02949 (2015)
Song, L., Smola, A., Gretton, A., Borgwardt, K.M., Bedo, J.: Supervised feature selection via dependence estimation. In: Proceedings of the 24th International Conference on Machine Learning, pp. 823–830 (2007)
Tapaswi, M., Bauml, M., Stiefelhagen, R.: Book2movie: aligning video scenes with book chapters. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1827–1835 (2015)
Torabi, A., Pal, C., Larochelle, H., Courville, A.: Using descriptive video services to create a large data source for video annotation research. arXiv preprint arXiv:1503.01070 (2015)
Vedantam, R., Lawrence Zitnick, C., Parikh, D.: Cider: Consensus-based image description evaluation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4566–4575 (2015)
Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. arXiv preprint arXiv:1710.10903 (2017)
Venugopalan, S., Rohrbach, M., Donahue, J., Mooney, R., Darrell, T., Saenko, K.: Sequence to sequence-video to text. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4534–4542 (2015)
Wang, H., Gao, C., Han, Y.: Sequence in sequence for video captioning. Pattern Recogn. Lett. 130, 327–334 (2020)
Wang, J., Bao, B., Xu, C.: Dualvgr: A dual-visual graph reasoning unit for video question answering. IEEE Trans. Multimed. (2021)
Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1492–1500 (2017)
Xie, Z., Zhang, W., Sheng, B., Li, P., Chen, C.L.P.: BagFN: broad attentive graph fusion network for high-order feature interactions. IEEE Trans. Neural Netw. Learn. Syst. 1–15 (2021). https://doi.org/10.1109/TNNLS.2021.3116209
Yu, Y., Chung, J., Yun, H., Kim, J., Kim, G.: Transitional adaptation of pretrained models for visual storytelling. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12658–12668 (2021)
Yu, Y., Ko, H., Choi, J., Kim, G.: End-to-end concept word detection for video captioning, retrieval, and question answering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3165–3173 (2017)
Zhong, R., Wang, R., Zou, Y., Hong, Z., Hu, M.: Graph attention networks adjusted Bi-LSTM for video summarization. IEEE Signal Process. Lett. 28, 663–667 (2021)
Zhou, W., Xia, Z., Dou, P., Su, T., Hu, H.: Double attention based on graph attention network for image multi-label classification. ACM Trans. Multimed. Comput. Commun. App. (TOMM) (2022)
Acknowledgments
This work was supported by the Shanghai Natural Science Foundation of China No. 19ZR1419100.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Liao, Y., Fan, L., Ding, H., Xie, Z. (2022). Spatial-Temporal Contextual Feature Fusion Network for Movie Description. In: Fang, L., Povey, D., Zhai, G., Mei, T., Wang, R. (eds) Artificial Intelligence. CICAI 2022. Lecture Notes in Computer Science(), vol 13604. Springer, Cham. https://doi.org/10.1007/978-3-031-20497-5_40
Download citation
DOI: https://doi.org/10.1007/978-3-031-20497-5_40
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20496-8
Online ISBN: 978-3-031-20497-5
eBook Packages: Computer ScienceComputer Science (R0)