Skip to main content

A Transformer-Based Network for Deformable Medical Image Registration

  • Conference paper
  • First Online:
Artificial Intelligence (CICAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13604))

Included in the following conference series:

  • 2000 Accesses

Abstract

Deformable medical image registration plays an important role in clinical diagnosis and treatment. Recently, the deep learning (DL) based image registration methods have been widely investigated and showed excellent performance in computational speed. However, these methods cannot provide enough registration accuracy because of insufficient ability in representing both the global and local features of the moving and fixed images. To address this issue, this paper has proposed the transformer based image registration method. This method uses the distinctive transformer to extract the global and local image features for generating the deformation fields, based on which the registered image is produced in an unsupervised way. Our method can improve the registration accuracy effectively by means of self-attention mechanism and bi-level information flow. Experimental results on such brain MR image datasets as LPBA40 and OASIS-1 demonstrate that compared with several traditional and DL based registration methods, our method provides higher registration accuracy in terms of dice values.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ashburner, J.: A fast diffeomorphic image registration algorithm. Neuroimage 38(1), 95–113 (2007)

    Article  Google Scholar 

  2. Avants, B.B., Epstein, C.L., Grossman, M., Gee, J.C.: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med. Image Anal. 12(1), 26–41 (2008)

    Article  Google Scholar 

  3. Balakrishnan, G., Zhao, A., Sabuncu, M.R., Dalca, A.V., Guttag, J.: An unsupervised learning model for deformable medical image registration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9252–9260. IEEE (2018)

    Google Scholar 

  4. Cao, H., et al.: Swin-Unet: Unet-like pure transformer for medical image segmentation. arXiv preprint arXiv:2105.05537 (2021)

  5. Cao, X., Yang, J., Wang, L., Xue, Z., Wang, Q., Shen, D.: Deep learning based inter-modality image registration supervised by intra-modality similarity. In: Shi, Y., Suk, H.-I., Liu, M. (eds.) MLMI 2018. LNCS, vol. 11046, pp. 55–63. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00919-9_7

    Chapter  Google Scholar 

  6. Chen, J., et al.: TransUNet: Transformers make strong encoders for medical image segmentation. arXiv preprint arXiv:2102.04306 (2021)

  7. Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945)

    Article  Google Scholar 

  8. Dosovitskiy, A., et al.: An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  9. Fischl, B.: Freesurfer. Neuroimage 62(2), 774–781 (2012)

    Article  Google Scholar 

  10. He, X., Tan, E.L., Bi, H., Zhang, X., Zhao, S., Lei, B.: Fully transformer network for skin lesion analysis. Med. Image Anal. 77, 102357 (2022)

    Article  Google Scholar 

  11. Kim, B., Kim, D.H., Park, S.H., Kim, J., Lee, J.G., Ye, J.C.: CycleMorph: cycle consistent unsupervised deformable image registration. Med. Image Anal. 71, 102036 (2021)

    Article  Google Scholar 

  12. Klein, S., Staring, M., Murphy, K., Viergever, M.A., Pluim, J.P.: Elastix: a toolbox for intensity-based medical image registration. IEEE Trans. Med. Imaging 29(1), 196–205 (2009)

    Article  Google Scholar 

  13. Lei, Y., et al.: 4d-CT deformable image registration using multiscale unsupervised deep learning. Phys. Med. Biol. 65(8), 085003 (2020)

    Article  Google Scholar 

  14. Luthra, A., Sulakhe, H., Mittal, T., Iyer, A., Yadav, S.: EFormer: Edge enhancement based transformer for medical image denoising. arXiv preprint arXiv:2109.08044 (2021)

  15. Ma, M., Xia, H., Tan, Y., Li, H., Song, S.: HT-Net: hierarchical context-attention transformer network for medical CT image segmentation. Appl. Intell. 52, 1–14 (2022)

    Article  Google Scholar 

  16. Marcus, D.S., Wang, T.H., Parker, J., Csernansky, J.G., Morris, J.C., Buckner, R.L.: Open access series of imaging studies (oasis): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults. J. Cogn. Neurosci. 19(9), 1498–1507 (2007)

    Article  Google Scholar 

  17. Miao, S., Wang, Z.J., Zheng, Y., Liao, R.: Real-time 2d/3d registration via CNN regression. In: 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), pp. 1430–1434. IEEE (2016)

    Google Scholar 

  18. MindSpore: https://www.mindspore.cn/

  19. Rohé, M.-M., Datar, M., Heimann, T., Sermesant, M., Pennec, X.: SVF-Net: learning deformable image registration using shape matching. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 266–274. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66182-7_31

    Chapter  Google Scholar 

  20. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  21. Salehi, S.S.M., Khan, S., Erdogmus, D., Gholipour, A.: Real-time deep pose estimation with geodesic loss for image-to-template rigid registration. IEEE Trans. Med. Imaging 38(2), 470–481 (2018)

    Article  Google Scholar 

  22. Shattuck, D.W., et al.: Construction of a 3d probabilistic atlas of human cortical structures. Neuroimage 39(3), 1064–1080 (2008)

    Article  Google Scholar 

  23. Sokooti, H., de Vos, B., Berendsen, F., Lelieveldt, B.P.F., Išgum, I., Staring, M.: Nonrigid image registration using multi-scale 3D convolutional neural networks. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 232–239. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66182-7_27

    Chapter  Google Scholar 

  24. de Vos, B.D., Berendsen, F.F., Viergever, M.A., Staring, M., Išgum, I.: End-to-end unsupervised deformable image registration with a convolutional neural network. In: Cardoso, M.J., et al. (eds.) DLMIA/ML-CDS -2017. LNCS, vol. 10553, pp. 204–212. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67558-9_24

    Chapter  Google Scholar 

  25. Wang, Z., Xie, Y., Ji, S.: Global voxel transformer networks for augmented microscopy. Nat. Mach. Intell. 3(2), 161–171 (2021)

    Article  Google Scholar 

  26. Yang, X., Kwitt, R., Styner, M., Niethammer, M.: Quicksilver: fast predictive image registration-a deep learning approach. Neuroimage 158, 378–396 (2017)

    Article  Google Scholar 

  27. Yoo, I., Hildebrand, D.G.C., Tobin, W.F., Lee, W.-C.A., Jeong, W.-K.: ssEMnet: serial-section electron microscopy image registration using a spatial transformer network with learned features. In: Cardoso, M.J., et al. (eds.) DLMIA/ML-CDS -2017. LNCS, vol. 10553, pp. 249–257. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67558-9_29

    Chapter  Google Scholar 

  28. Zhao, S., Dong, Y., Chang, E.I., Xu, Y., et al.: Recursive cascaded networks for unsupervised medical image registration. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10600–10610. IEEE (2019)

    Google Scholar 

Download references

Acknowledgment

This work was sponsored by the National Natural Science Foundation of China (Grant No. 61871440) and CAAI-Huawei MindSpore Open Fund. We gratefully acknowledge the support of MindSpore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuming Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Y., Qian, W., Li, M., Zhang, X. (2022). A Transformer-Based Network for Deformable Medical Image Registration. In: Fang, L., Povey, D., Zhai, G., Mei, T., Wang, R. (eds) Artificial Intelligence. CICAI 2022. Lecture Notes in Computer Science(), vol 13604. Springer, Cham. https://doi.org/10.1007/978-3-031-20497-5_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20497-5_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20496-8

  • Online ISBN: 978-3-031-20497-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics