Abstract
Video Moment Retrieval (VMR) is a challenging cross-modal retrieval task that aims to retrieve the most relevant moment from an untrimmed video via a given language query. In this task, cross-modal semantics should be thoroughly comprehended and supervisory signal of limited annotations should be efficiently mined. Toward this end, we develop a Context Alignment Network (CAN) to tackle VMR by modeling and aligning cross-modal contexts. First, we employ fine-grained fusion to preserve rich low-level information and conduct complementary local-global context modeling to translate low-level information into high-level semantics. Second, we propose a novel context alignment learning to utilize additional context alignment supervision during training. The intuitive motivation is that contextual information around the predicted moment boundaries should be similar to that of the ground truth moment boundaries. Therefore, we define the alignment degree of boundary contexts between video moments as a proxy measure of their temporal overlap. By minimizing the context alignment loss, the model is driven to learn a context-level alignment relationship between moment boundaries. We find context alignment learning is effective to improve the retrieval accuracy by exploiting context alignment as additional supervisory signal. Extensive experiments show that CAN attains competitive performance compared with state-of-the-arts on Charades-STA and TACoS datasets, demonstrating the effectiveness of our proposed method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Anne Hendricks, L., Wang, O., Shechtman, E., Sivic, J., Darrell, T., Russell, B.: Localizing moments in video with natural language. In: CVPR (2017)
Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014)
Carreira, J., Zisserman, A.: Quo vadis, action recognition? A new model and the kinetics dataset. In: CVPR (2017)
Chen, L., et al.: Rethinking the bottom-up framework for query-based video localization. In: AAAI (2020)
Cheng, X., Lin, H., Wu, X., Yang, F., Shen, D.: Improving video-text retrieval by multi-stream corpus alignment and dual softmax loss. arXiv preprint arXiv:2109.04290 (2021)
Gao, J., Sun, C., Yang, Z., Nevatia, R.: Tall: temporal activity localization via language query. In: ICCV (2017)
Ghosh, S., Agarwal, A., Parekh, Z., Hauptmann, A.: EXCL: extractive clip localization using natural language descriptions. arXiv preprint arXiv:1904.02755 (2019)
Hahn, M., Kadav, A., Rehg, J.M., Graf, H.P.: Tripping through time: efficient localization of activities in videos. arXiv preprint arXiv:1904.09936 (2019)
Ji, S., Xu, W., Yang, M., Yu, K.: 3d convolutional neural networks for human action recognition. In: TPAMI (2012)
Liu, L., Jiang, H., He, P., Chen, W., Liu, X., Gao, J., Han, J.: On the variance of the adaptive learning rate and beyond. arXiv preprint arXiv:1908.03265 (2019)
Lu, C., Chen, L., Tan, C., Li, X., Xiao, J.: Debug: a dense bottom-up grounding approach for natural language video localization. In: EMNLP-IJCNLP (2019)
Mun, J., Cho, M., Han, B.: Local-global video-text interactions for temporal grounding. In: CVPR (2020)
Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word representation. In: EMNLP (2014)
Ramachandran, P., Zoph, B., Le, Q.V.: Searching for activation functions. arXiv preprint arXiv:1710.05941 (2017)
Regneri, M., Rohrbach, M., Wetzel, D., Thater, S., Schiele, B., Pinkal, M.: Grounding action descriptions in videos. In: Transactions of the Association for Computational Linguistics (2013)
Rohrbach, M., Regneri, M., Andriluka, M., Amin, S., Pinkal, M., Schiele, B.: Script data for attribute-based recognition of composite activities. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7572, pp. 144–157. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33718-5_11
Seo, M., Kembhavi, A., Farhadi, A., Hajishirzi, H.: Bidirectional attention flow for machine comprehension. arXiv preprint arXiv:1611.01603 (2016)
Sigurdsson, G.A., Varol, G., Wang, X., Farhadi, A., Laptev, I., Gupta, A.: Hollywood in homes: crowdsourcing data collection for activity understanding. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 510–526. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_31
Vaswani, A., et al.: Attention is all you need. In: NIPS (2017)
Wang, J., Ma, L., Jiang, W.: Temporally grounding language queries in videos by contextual boundary-aware prediction. In: AAAI (2020)
Wu, J., Li, G., Liu, S., Lin, L.: Tree-structured policy based progressive reinforcement learning for temporally language grounding in video. In: AAAI (2020)
Xiao, S., et al.: Boundary proposal network for two-stage natural language video localization. In: AAAI (2021)
Xu, H., He, K., Plummer, B.A., Sigal, L., Sclaroff, S., Saenko, K.: Multilevel language and vision integration for text-to-clip retrieval. In: AAAI (2019)
Yu, A.W., Dohan, D., Luong, M.T., Zhao, R., Chen, K., Norouzi, M., Le, Q.V.: QANet: Combining local convolution with global self-attention for reading comprehension. arXiv preprint arXiv:1804.09541 (2018)
Yu, Y., Kim, J., Kim, G.: A joint sequence fusion model for video question answering and retrieval. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 487–503. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_29
Yuan, Y., Ma, L., Wang, J., Liu, W., Zhu, W.: Semantic conditioned dynamic modulation for temporal sentence grounding in videos. arXiv preprint arXiv:1910.14303 (2019)
Yuan, Y., Mei, T., Zhu, W.: To find where you talk: temporal sentence localization in video with attention based location regression. In: AAAI (2019)
Zeng, R., Xu, H., Huang, W., Chen, P., Tan, M., Gan, C.: Dense regression network for video grounding. In: CVPR (2020)
Zhang, D., Dai, X., Wang, X., Wang, Y.F., Davis, L.S.: Man: Moment alignment network for natural language moment retrieval via iterative graph adjustment. In: CVPR (2019)
Zhang, H., Sun, A., Jing, W., Zhen, L., Zhou, J.T., Goh, R.S.M.: Natural language video localization: A revisit in span-based question answering framework. IEEE Trans. Pattern Anal. Mach. Intell. (2021)
Zhang, S., Peng, H., Fu, J., Luo, J.: Learning 2d temporal adjacent networks for moment localization with natural language. In: AAAI (2020)
Zhu, L., Yang, Y.: ActBERT: learning global-local video-text representations. In: CVPR (2020)
Acknowledgements
This work was supported partially by the NSFC (U1911401, U1811461, 62076260, 61772570), Guangdong Natural Science Funds Project (2020B1515120085), Guangdong NSF for Distinguished Young Scholar (2022B1515020009), and the Key-Area Research and Development Program of Guangzhou (202007030004).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Tan, C., Hu, JF., Zheng, WS. (2022). Context Alignment Network for Video Moment Retrieval. In: Fang, L., Povey, D., Zhai, G., Mei, T., Wang, R. (eds) Artificial Intelligence. CICAI 2022. Lecture Notes in Computer Science(), vol 13604. Springer, Cham. https://doi.org/10.1007/978-3-031-20497-5_42
Download citation
DOI: https://doi.org/10.1007/978-3-031-20497-5_42
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20496-8
Online ISBN: 978-3-031-20497-5
eBook Packages: Computer ScienceComputer Science (R0)