Skip to main content

Low-Light Image Enhancement Under Mixed Noise Model with Tensor Representation

  • Conference paper
  • First Online:
Artificial Intelligence (CICAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13604))

Included in the following conference series:

  • 1298 Accesses

Abstract

Compared with the traditional Retinex model, the robust Retinex model considers the influence of additive Gaussian noise to improve the performance of low-light image enhancement with strong noise. However, the real noise model is not so simple. In order to describe the noise model more accurately, this paper considers the enhancement of low-light images under the influence of Poisson and Gaussian mixture noise, so as to better model the noise model and suppress the noise amplification. In order to smooth the noise in the reflection component, the current methods generally decompose the V-channel of the image converted to HSV color space to obtain the illuminance component and the reflection component, and then constrain the reflection component a priori such as sparse, low rank or nonlocal self-similarity based on matrix or vector operations. The problem is that the conversion of color space may lead to color distortion, and the matrix operation and vectorization operation by channel may damage the structural relationship of channel and space respectively, and may occupy a high memory. In order to better maintain the correlation between RGB image channels, the RGB image is directly represented in the form of tensor, processed in the RGB color space as a whole, and the tensor nuclear norm is used to impose a low rank constraint on the reflection component to suppress the noise. Compared with the contrast method, the proposed method achieves good visual and quantitative results in low-light image enhancement tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Land, E.H.: The retinex theory of color vision. Sci. Amer. 237(6), 108–128 (1977)

    Article  MathSciNet  Google Scholar 

  2. Barrow, H., Tenenbaum, J., Hanson, A., Riseman, E.: Recovering intrinsic scene characteristics. Comput. Vis. Syst. 2, 3–26 (1978)

    Google Scholar 

  3. Cai, B., Xu, X., Guo, K., Jia, K., Hu, B., Tao, D.: A joint intrinsic extrinsic prior model for retinex. In: Proceedings of IEEE International Conference on Computer Vision (ICCV), October 2017, pp. 4000–4009 (2017)

    Google Scholar 

  4. Ren, X., Li, M., Cheng, W.-H., Liu, J.: Joint enhancement and denoising method via sequential decomposition. In: IEEE International Symposium on Circuits and Systems (ISCAS) 2018, pp. 1–5 (2018)

    Google Scholar 

  5. Jobson, D.J., Rahman, Z., Woodell, G.A.: A multiscale retinex for bridging the gap between color images and the human observation of scenes. IEEE Trans. Image Process. 6(7), 965–976 (1997)

    Article  Google Scholar 

  6. Jobson, D.J., Rahman, Z., Woodell, G.A.: Properties and performance of a center/surround retinex. IEEE Trans. Image Process. 6(3), 451–462 (1997)

    Article  Google Scholar 

  7. Morel, J.M., Petro, A.B., Sbert, C.: A PDE formalization of retinex theory. IEEE Trans. Image Process. 19(11), 2825–2837 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Land, E.H.: Recent advances in retinex theory and some implications for cortical computations: Color vision and the natural image. Proc. Nat. Acad. Sci. USA 80(16), 5163–5169 (1983)

    Article  Google Scholar 

  9. Brainard, D.H., Wandell, B.A.: Analysis of the retinex theory of color vision. J. Opt. Soc. Am. A. Opt. Image. Sci. 3(10), 1651–1661 (1986)

    Article  Google Scholar 

  10. Kimmel, R., Elad, M., Shaked, D., Keshet, R., Sobel, I.: A variational framework for Retinex. Int. J. Comput. Vis. 52(1), 7–23 (2003)

    Article  MATH  Google Scholar 

  11. Provenzi, E., Marini, D., De Carli, L., Rizzi, A.: Mathematical definition and analysis of the retinex algorithm. J. Opt. Soc. Am. A. Opt. Image. Sci. 22(12), 2613–2621 (2005)

    Article  MathSciNet  Google Scholar 

  12. Ng, M.K., Wang, W.: A total variation model for retinex. SIAM J. Imag. Sci. 4(1), 345–365 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fu, X., Zeng, Huang, Y., Zhang, X.-P., Ding, X.: A weighted variational model for simultaneous reflectance and illuminance estimation. In: Proceedings of IEEE Conference on Computational Vision and Pattern Recognition (CVPR), June 2016

    Google Scholar 

  14. Xu, J., et al.: STAR: a structure and texture aware retinex model. IEEE Trans. Image Process. 29, 5022–5037 (2020)

    Article  MATH  Google Scholar 

  15. Kolda, T.: Tensor decompositions and applications. Siam. Rev. 51, 455–500 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Peng, J., Xie, Q., Zhao, Q., Wang, Y., Yee, L., Meng, D.: Enhanced 3DTV regularization and its applications on HSI denoising and compressed sensing. IEEE Trans. Image Process. 29, 7889–7903 (2020). https://doi.org/10.1109/TIP.2020.3007840

    Article  MathSciNet  MATH  Google Scholar 

  17. Guo, X.: LIME: a method for low-light image enhancement. In: ACM (2016)

    Google Scholar 

  18. He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2341–2353 (2011)

    Article  Google Scholar 

  19. Land, E.: The retinex theory of color vision. Sci. Am. 237(6), 108–128 (1977)

    Article  Google Scholar 

  20. Xu, L., Lu, C., Xu, Y., et al.: Image smoothing via L0 gradient minimization. In: SIGGRAPH Asia Conference. ACM (2011)

    Google Scholar 

  21. Li, M., Liu, J., Yang, W., Sun, X., Guo, Z.: Structure-revealing lowlight image enhancement via robust retinex model. IEEE Trans. Image Process. 27(6), 2828–2841 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  22. Candes, E.J., Wakin, M.B., Boyd, S.P.: Enhancing sparsity by reweighted L1 minimization. J. Fourier Anal. Appl. 14(5–6), 877–905 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Barrett, R., et al.: Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods. SIAM (1994)

    Google Scholar 

  24. Kilmer, M.E., Martin, C.D.: Factorization strategies for third-order tensors. Linear Algebra Appl. 435(3), 641–658 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lin, Z., Chen, M., Ma, Y.: The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices. arXiv:1009.5055

  26. Kilmer, M.E., Braman, K., Hao, N., Hoover, R.C.: Third-order tensors as operators on matrices: a theoretical and computational framework with applications in imaging. SIAM J. Matrix Anal. App. 34(1), 148–172 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Fu, X., Liao, Y., Zeng, D., Huang, Y., Zhang, X.-P., Ding, X.: A probabilistic method for image enhancement with simultaneous illuminance and reflectance estimation. IEEE Trans. Image Process. 24(12), 4965–4977 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Mittal, A., Soundararajan, R., Bovik, A.C.: Making a ‘completely blind’ image quality analyzer. IEEE Signal Process. Lett. 20(3), 209–212 (2013)

    Article  Google Scholar 

  29. Sheikh, H.R., Bovik, A.C.: Image information and visual quality. IEEE Trans. Image Process. 15(2), 430–444 (2006)

    Article  Google Scholar 

  30. Wang, S., Zheng, J., Hu, H.-M., Li, B.: Naturalness preserved enhancement algorithm for non-uniform illuminance images. IEEE Trans. Image Process. 22(9), 3538–3548 (2013)

    Article  Google Scholar 

  31. Lu, C., Feng, J., Chen, Y., Liu, W., Lin, Z., Yan, S.: Tensor Robust Principal Component Analysis with a New Tensor Nuclear Norm. IEEE Trans. Pattern Anal. Mach. Intell. 42(4), 925–938 (2020)

    Article  Google Scholar 

  32. Ma, K., Zeng, K., Wang, Z.: Perceptual quality assessment for multi-exposure image fusion. IEEE Trans. Image Process. 24(11), 3345–3356 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by the Guangdong Province Basic and Applied Basic Research Fund Project under Grant 2019A1515011041, Science and Technology Project of Guangzhou under Grant 202103010003, Science and Technology Project in key areas of Foshan under Grant 2020001006285, Xijiang Innovation Team of Zhaoqing under Grant XJCXTD3-2019-04B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongxia Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, W., Gao, H., Huang, S., Niu, S., Chen, H., Liang, G. (2022). Low-Light Image Enhancement Under Mixed Noise Model with Tensor Representation. In: Fang, L., Povey, D., Zhai, G., Mei, T., Wang, R. (eds) Artificial Intelligence. CICAI 2022. Lecture Notes in Computer Science(), vol 13604. Springer, Cham. https://doi.org/10.1007/978-3-031-20497-5_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20497-5_48

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20496-8

  • Online ISBN: 978-3-031-20497-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics