Abstract
We introduce VERTEX, an effective solution to recovering the 3D shape and texture of vehicles from uncalibrated monocular inputs under real-world street environments. To fully utilize the semantic prior of vehicles, we propose a novel geometry and texture joint representation based on implicit semantic template mapping. Compared to existing representations which infer 3D texture fields, our method explicitly constrains the texture distribution on the 2D surface of the template and avoids the limitation of fixed topology. Moreover, we propose a joint training strategy that leverages the texture distribution to learn a semantic-preserving mapping from vehicle instances to the canonical template. We also contribute a new synthetic dataset containing 830 elaborately textured car models labeled with key points and rendered using Physically Based Rendering (PBRT) system with measured HDRI skymaps to obtain highly realistic images. Experiments demonstrate the superior performance of our approach on both testing dataset and in-the-wild images. Furthermore, the presented technique enables additional applications such as 3D vehicle texture transfer and material identification, and can be generalized to other shape categories.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Beker, D., et al.: Monocular differentiable rendering for self-supervised 3D object detection (2020)
Carr, J.C., Beatson, R.K., Cherrie, J.B., Mitchell, T.J., Evans, T.R.: Reconstruction and representation of 3D objects with radial basis functions. In: Computer Graphics (2001)
Chan, E.R., Monteiro, M., Kellnhofer, P., Wu, J., Wetzstein, G.: pi-GAN: periodic implicit generative adversarial networks for 3D-aware image synthesis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5799–5809 (2021)
Chang, A.X., et al.: An information-rich 3D model repository. Comput. Sci. (2015)
Chen, Z., Zhang, H.: Learning implicit fields for generative shape modeling. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019)
Choy, C.B., Xu, D., Gwak, J.Y., Chen, K., Savarese, S.: 3D-R2N2: A Unified Approach for Single and Multi-view 3D object reconstruction. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 628–644. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_38
Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3213–3223 (2016)
Deng, Y., Yang, J., Tong, X.: Deformed implicit field: Modeling 3D shapes with learned dense correspondence. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10286–10296 (2021)
Deng, Y., Yang, J., Xiang, J., Tong, X.: Gram: generative radiance manifolds for 3D-aware image generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10673–10683 (2022)
Goel, S., Kanazawa, A., Malik, J.: Shape and viewpoint without keypoints. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12360, pp. 88–104. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58555-6_6
Gropp, A., Yariv, L., Haim, N., Atzmon, M., Lipman, Y.: Implicit geometric regularization for learning shapes. arXiv:2002.10099 (2020)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Henderson, P., Tsiminaki, V., Lampert, C.: Leveraging 2D data to learn textured 3D mesh generation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020)
Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local NASH equilibrium. In: Advances in Neural Information Processing Systems, pp. 6626–6637 (2017)
Kaiming, H., Georgia, G., Piotr, D., Ross, G.: Mask R-CNN. IEEE Trans. Pattern Anal. Mach. Intell, pp. 1–1 (2017)
Kanazawa, A., Tulsiani, S., Efros, A.A., Malik, J.: Learning category-specific mesh reconstruction from image collections. In: Proceedings of the European Conference on Computer Vision (ECCV) (2018)
Krause, J., Stark, M., Deng, J., Fei-Fei, L.: 3D object representations for fine-grained categorization. In: 4th International IEEE Workshop on 3D Representation and Recognition (3dRR-13). Sydney, Australia (2013)
Lalonde, J.F,et al.: The Laval HDR sky database. http://sky.hdrdb.com (2016)
Li, W., et al.: AADS: Augmented autonomous driving simulation using data-driven algorithms. Science Robotics 4 (2019)
Meng, D., et al.: Parsing-based view-aware embedding network for vehicle re-identification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) June 2020
Menze, M., Heipke, C., Geiger, A.: Object scene flow. ISPRS J. Photogrammetry Remote Sens.(JPRS) (2018)
Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy networks: learning 3D reconstruction in function space. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019)
Miao, H., Lu, F., Liu, Z., Zhang, L., Manocha, D., Zhou, B.: Robust 2D/3D vehicle parsing in CVIS (2021)
Newell, A., Yang, K., Deng, J.: Stacked Hourglass Networks for Human Pose Estimation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 483–499. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_29
Niemeyer, M., Geiger, A.: Giraffe: representing scenes as compositional generative neural feature fields. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11453–11464 (2021)
Oechsle, M., Mescheder, L., Niemeyer, M., Strauss, T., Geiger, A.: Texture fields: learning texture representations in function space. In: Proceedings IEEE International Conf. on Computer Vision (ICCV) (2019)
Park, E., Yang, J., Yumer, E., Ceylan, D., Berg, A.C.: Transformation-grounded image generation network for novel 3D view synthesis. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)
Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: DeepSDF: Learning continuous signed distance functions for shape representation. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) June 2019
Pharr, M., Jakob, W., Humphreys, G.: Physically based rendering: from theory to implementation. Morgan Kaufmann (2016)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional Networks for Biomedical Image Segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Saito, S., Huang, Z., Natsume, R., Morishima, S., Li, H., Kanazawa, A.: PIFU: pixel-aligned implicit function for high-resolution clothed human digitization. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV) (2019)
Shen, C., O”Brien, J.F., Shewchuk, J.R.: Interpolating and approximating implicit surfaces from polygon soup. ACM Trans. Graph. 23(3), pp. 896–904 (2004)https://doi.org/10.1145/1186562.1015816
Sun, Y., Liu, Z., Wang, Y., Sarma, S.E.: Im2avatar: colorful 3D reconstruction from a single image (2018)
Turk, G., O’Brien, J.F.: Modelling with implicit surfaces that interpolate. ACM Trans. Graph. 21(4), 855–873 (2002)
Wang, P., Huang, X., Cheng, X., Zhou, D., Geng, Q., Yang, R.: The apolloscape open dataset for autonomous driving and its application. IEEE Trans. pattern. Anal. Mach. Intell (2019)
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)
Xu, Q., Wang, W., Ceylan, D., Mech, R., Neumann, U.: DISN: Deep implicit surface network for high-quality single-view 3D reconstruction. In: Advances in Neural Information Processing Systems 32 (2019)
Xu, Y., Peng, S., Yang, C., Shen, Y., Zhou, B.: 3D-aware image synthesis via learning structural and textural representations. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18430–18439 (2022)
Zheng, Z., Yu, T., Dai, Q., Liu, Y.: Deep implicit templates for 3D shape representation (2020)
Zhu, J.Y., et al.: Visual object networks: Image generation with disentangled 3D representations. In: Advances in Neural Information Processing Systems 31 (2018)
Acknowledgements
This paper is supported by the National Key Research and Development Program of China [2018YFB2100500].
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Zhao, X. et al. (2022). VERTEX: VEhicle Reconstruction and TEXture Estimation from a Single Image Using Deep Implicit Semantic Template Mapping. In: Fang, L., Povey, D., Zhai, G., Mei, T., Wang, R. (eds) Artificial Intelligence. CICAI 2022. Lecture Notes in Computer Science(), vol 13604. Springer, Cham. https://doi.org/10.1007/978-3-031-20497-5_52
Download citation
DOI: https://doi.org/10.1007/978-3-031-20497-5_52
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20496-8
Online ISBN: 978-3-031-20497-5
eBook Packages: Computer ScienceComputer Science (R0)