Skip to main content

Lightweight Image Compression Based on Deep Learning

  • Conference paper
  • First Online:
Artificial Intelligence (CICAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13604))

Included in the following conference series:

Abstract

Deep learning based image compression (DLIC) algorithms have achieved higher compression gain than conventional algorithms. However, the large parameters and float-point operations (FLOPs) of DLIC severely limit their application on mobile devices. To reduce the parameters and FLOPs while maintaining the superior compression gain, this paper proposes lightweight algorithms especially for the feature analysis, synthesis, and fusion modules in DLIC networks. Firstly, based on the observation that there are highly correlated pairing convolution kernels in the analysis/synthesis modules, a new Dynamic Concatenated Convolution (DCC) is proposed to discard half of pairing convolution kernels, which are then restored by the affine transformation of the remaining convolution kernels. Secondly, a novel Depthwise Separable Residual Block (DSRB), utilizing improved depthwise separable convolutions and skipped connections, is proposed to simplify the stacks of residual blocks in feature fusion modules, significantly reducing parameters and FLOPs. Extensive experimental results demonstrate that the proposed lightweight algorithms have fewer parameters/FLOPs and better image compression gain compared with the existing state-of-the-art lightweight algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hu, Y., Yang, W., Ma, Z., Liu, J.: Learning end-to-end lossy image compression: a benchmark. IEEE Trans. Pattern Anal. Mach. Intell. 44(8), 4194–4211 (2022)

    Google Scholar 

  2. Ma, Y., Zhai, Y.Q., Yang, J.Y., Yang, C.H., Wang, R.G.: AFEC: adaptive feature extraction modules for learned image compression. In: ACM International Conference on Multimedia, pp. 5436–5444 (2021)

    Google Scholar 

  3. Yang, F., Herranz, L., Weijer, J.V.D., Zhao, J.A.I., López, A.M., Mozerov, M.G.: Variable rate deep image compression with modulated autoencoder. IEEE Signal Process. Lett. 27(2), 331–335 (2020)

    Article  Google Scholar 

  4. Mentzer, F., Agustsson, E., Tschannen, M., Timofte, R., Gool, L.V.: Conditional probability models for deep image compression. In: Proceedings of IEEE/CVF Conference Computer Vision and Pattern Recognition (CVPR), pp. 4394–4402 (2018)

    Google Scholar 

  5. Theis, L., Shi, W., Cunningham, A., Huszár, F.: Lossy image compression with compressive autoencoders (2017). arXiv preprint arXiv:1703.00395

  6. Wallace, G.K.: The jpeg still picture compression standard. Commun. Acm 38(1), xviii-xxxiv (1992)

    Google Scholar 

  7. Christopoulos, C., Skodras, A., Ebrahimi, T.: The JPEG2000 still image coding system: an overview. IEEE Trans. Cons. Electron. 46(4), 1103–1127 (2000)

    Article  Google Scholar 

  8. Bellard, F.: Bpg image format, vol. 1 (2015). https://bellard.org/bpg

  9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of IEEE/CVF Conference Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)

    Google Scholar 

  10. Cheng, Z., Sun, H., Takeuchi, M., Katto, J.: Deep residual learning for image compression. In: Proceedings of CVPR Workshops (2019)

    Google Scholar 

  11. Yu, R., et al.: Nisp: pruning networks using neuron importance score propagation. In: Proceedings of IEEE/CVF Conference Computer Vision and Pattern Recognition (CVPR), pp. 9194–9203 (2018)

    Google Scholar 

  12. He, Y., Dong, X., Kang, G., Fu, Y., Yan, C., Yang, Y.: Asymptotic soft kernel pruning for deep convolutional neural networks. IEEE Trans. Cybern. 50(8), 3594–3604 (2020)

    Article  Google Scholar 

  13. Tian, G., Chen, J., Zeng, X., Liu, Y.: Pruning by training: a novel deep neural network compression framework for image processing. IEEE Signal Process. Lett. (2021). https://doi.org/10.1109/LSP.2021.3054315

  14. Chollet, F.: Xception: deep learning with depthwise separable convolutions. In: Proceedings of IEEE/CVF Conference Computer Vision and Pattern Recognition (CVPR), pp. 1800–1807 (2017)

    Google Scholar 

  15. Howard, A.G., et al.: Mobilenets: efficient convolutional neural networks for mobile vision applications (2017). arXiv preprint arXiv:1704.04861

  16. Zhang, X., Zhou, X., Lin, M., Sun, J.: Shufflenet: an extremely mefficient convolutional neural network for mobile devices. In: Proceedings of IEEE/CVF Conference Computer Vision and Pattern Recognition (CVPR), pp. 6848–6856 (2018)

    Google Scholar 

  17. Ma, N., Zhang, X., Zheng, H.-T., Sun, J.: Shufflenet v2: practical guidelines for efficient cnn architecture design. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 116–131 (2018)

    Google Scholar 

  18. Tan, M., Le, Q.V.: Mixconv: mixed depthwise convolutional kernels. arXiv preprint arXiv:1907.09595 (2019)

  19. Daquan, Z., Hou, Q., Chen, Y., Feng, J., Yan, S.: Rethinking bottleneck structure for efficient mobile network design. arXiv preprint arXiv:2007.02269 (2020)

  20. Shang, W., Sohn, K., Almeida, D., Lee, H.: Understanding and improving convolutional neural networks via concatenated rectified linear units. In: Proceedings of International conference on machine learning (ICML), pp. 2217–2225 (2016)

    Google Scholar 

  21. Sandler, M., Howard, A.G., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetV2: inverted residuals and linear bottlenecks. In: Proceedings of IEEE/CVF Conference Computer Vision and Pattern Recognition (CVPR), pp. 4510–4520 (2018)

    Google Scholar 

  22. Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vision 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  23. Kodak, E.: The kodak photocd dataset. http://r0k.us/graphics/kodak/.6

  24. Timofte, R., De Smet, V., Van Gool, L.: A+: adjusted anchored neighborhood regression for fast super-resolution. In: Cremers, D., Reid, I., Saito, H., Yang, M.-H. (eds.) ACCV 2014. LNCS, vol. 9006, pp. 111–126. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16817-3_8

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liquan Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, M., Wang, Z., Shen, L., Ding, Q., Yu, L., Jiang, X. (2022). Lightweight Image Compression Based on Deep Learning. In: Fang, L., Povey, D., Zhai, G., Mei, T., Wang, R. (eds) Artificial Intelligence. CICAI 2022. Lecture Notes in Computer Science(), vol 13604. Springer, Cham. https://doi.org/10.1007/978-3-031-20497-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20497-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20496-8

  • Online ISBN: 978-3-031-20497-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics