Skip to main content

Multi-Relational Cognitive Diagnosis for Intelligent Education

  • Conference paper
  • First Online:
Artificial Intelligence (CICAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13605))

Included in the following conference series:

  • 1425 Accesses

Abstract

In intelligent education, cognitive diagnosis is a fundamental but important task, which aims to discover students’ mastery of different knowledge concepts. Plenty of methods have been proposed to exploit student-exercise interactions, especially graph-based methods. However, most of them treat student behaviors to exercises as a binary interaction (i.e., interacted or not), neglecting diverse behavior patterns (i.e., correct and incorrect interactions). Moreover, the number of concepts is much smaller than exercises, presenting a challenge for measuring student proficiency. Therefore, in this paper, we propose a novel Multi-Relational Cognitive Diagnosis (MRCD) framework. Specifically, we first divide students’ answer behaviors into correct and incorrect interactions with exercises, and form the corresponding two student-exercise relation graphs. We then leverage Graph Convolutional Network to learn exercise-level representations of students and exercises based on different relation graphs. Since dividing operation exacerbate the data sparsity problem, we employ graph contrastive learning to enhance MRCD on representation learning. Moreover, considering the relatively small number of concepts, we directly employ attention mechanism to generate student and exercise representations based on relevant concepts. After that, we fuse exercise-level and concept-level representations, and send them to a cognitive diagnosis model to predict student performance. Extensive experiments over two real-world datasets demonstrate the effectiveness of our proposed model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://sites.google.com/site/assistmentsdata/home/assistment-2009-2010-data/skill-builder-data-2009-2010.

  2. 2.

    http://ednet-leaderboard.s3-website-ap-northeast-1.amazonaws.com/.

References

  1. Adams, R.J., Wilson, M., Wang, W.C.: The multidimensional random coefficients multinomial logit model. Appl. Psychol. Meas. 21(1), 1–23 (1997)

    Google Scholar 

  2. Allen, M.J., Yen, W.M.: Introduction to Measurement Theory. Waveland Press, Long Grove (2001)

    Google Scholar 

  3. Anderson, A., Huttenlocher, D., Kleinberg, J., Leskovec, J.: Engaging with massive online courses. In: WWW, pp. 687–698 (2014)

    Google Scholar 

  4. Anderson, J.R., Boyle, C.F., Reiser, B.J.: Intelligent tutoring systems. Science 228(4698), 456–462 (1985)

    Article  Google Scholar 

  5. Bradley, A.P.: The use of the area under the roc curve in the evaluation of machine learning algorithms. Pattern Recogn. 30(7), 1145–1159 (1997)

    Article  Google Scholar 

  6. Chai, T., Draxler, R.R.: Root mean square error (RMSE) or mean absolute error (MAE)? - arguments against avoiding RMSE in the literature. Geosci. Model Dev. 7(3), 1247–1250 (2014)

    Article  Google Scholar 

  7. Chen, L., Wu, L., Hong, R., Zhang, K., Wang, M.: Revisiting graph based collaborative filtering: a linear residual graph convolutional network approach. In: AAAI, vol. 34, pp. 27–34 (2020)

    Google Scholar 

  8. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: ICML, pp. 1597–1607. PMLR (2020)

    Google Scholar 

  9. Chen, Y., Li, X., Liu, J., Ying, Z.: Recommendation system for adaptive learning. Appl. Psychol. Meas. 42(1), 24–41 (2018)

    Article  Google Scholar 

  10. Cheng, S., et al.: Dirt: deep learning enhanced item response theory for cognitive diagnosis. In: CIKM, pp. 2397–2400 (2019)

    Google Scholar 

  11. De La Torre, J.: Dina model and parameter estimation: a didactic. J. Educ. Behav. Stat. 34(1), 115–130 (2009)

    Article  Google Scholar 

  12. DiBello, L.V., Roussos, L.A., Stout, W.: 31A review of cognitively diagnostic assessment and a summary of psychometric models. Handb. Stat. 26, 979–1030 (2006)

    Article  MATH  Google Scholar 

  13. Embretson, S.E., Reise, S.P.: Item Response Theory. Psychology Press, Hove (2013)

    Google Scholar 

  14. Gao, W., et al.: RCD: relation map driven cognitive diagnosis for intelligent education systems. In: SIGIR, pp. 501–510 (2021)

    Google Scholar 

  15. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp. 249–256. JMLR Workshop and Conference Proceedings (2010)

    Google Scholar 

  16. He, X., Deng, K., Wang, X., Li, Y., Zhang, Y., Wang, M.: LightGCN: simplifying and powering graph convolution network for recommendation. In: SIGIR, pp. 639–648 (2020)

    Google Scholar 

  17. Khosla, P., et al.: Supervised contrastive learning. In: NeurIPS, vol. 33, pp. 18661–18673 (2020)

    Google Scholar 

  18. Lin, Z., Tian, C., Hou, Y., Zhao, W.X.: Improving graph collaborative filtering with neighborhood-enriched contrastive learning. In: WWW, pp. 2320–2329 (2022)

    Google Scholar 

  19. Liu, M., Shao, P., Zhang, K.: Graph-based exercise-and knowledge-aware learning network for student performance prediction. In: Fang, L., Chen, Y., Zhai, G., Wang, J., Wang, R., Dong, W. (eds.) CICAI 2021. LNCS, vol. 13069, pp. 27–38. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-93046-2_3

    Chapter  Google Scholar 

  20. Liu, Q., et al.: EKT: exercise-aware knowledge tracing for student performance prediction. IEEE Trans. Knowl. Data Eng. 33(1), 100–115 (2019)

    Article  Google Scholar 

  21. Liu, Q., et al.: Exploiting cognitive structure for adaptive learning. In: KDD, pp. 627–635 (2019)

    Google Scholar 

  22. Nakagawa, H., Iwasawa, Y., Matsuo, Y.: Graph-based knowledge tracing: modeling student proficiency using graph neural network. In: 2019 IEEE/WIC/ACM International Conference on Web Intelligence (WI), pp. 156–163. IEEE (2019)

    Google Scholar 

  23. Van den Oord, A., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding. arXiv e-prints arXiv-1807 (2018)

  24. Qiu, J., et al.: GCC: graph contrastive coding for graph neural network pre-training. In: KDD, pp. 1150–1160 (2020)

    Google Scholar 

  25. Rasch, G.: On general laws and the meaning of measurement in psychology. In: Berkeley Symposium on Mathematical Statistics, vol. 4, pp. 321–333 (1961)

    Google Scholar 

  26. Reckase, M.D.: Multidimensional item response theory models. In: Reckase, M.D. (ed.) Multidimensional Item Response Theory. SSBS, pp. 79–112. Springer, New York (2009). https://doi.org/10.1007/978-0-387-89976-3_4

    Chapter  MATH  Google Scholar 

  27. Schlichtkrull, M., Kipf, T.N., Bloem, P., van den Berg, R., Titov, I., Welling, M.: Modeling relational data with graph convolutional networks. In: Gangemi, A., et al. (eds.) ESWC 2018. LNCS, vol. 10843, pp. 593–607. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93417-4_38

    Chapter  Google Scholar 

  28. Thai-Nghe, N., Schmidt-Thieme, L.: Multi-relational factorization models for student modeling in intelligent tutoring systems. In: 2015 Seventh International Conference on Knowledge and Systems Engineering (KSE), pp. 61–66. IEEE (2015)

    Google Scholar 

  29. Tong, S., et al.: Structure-based knowledge tracing: an influence propagation view. In: 2020 IEEE International Conference on Data Mining (ICDM), pp. 541–550. IEEE (2020)

    Google Scholar 

  30. Wang, F., et al.: Neural cognitive diagnosis for intelligent education systems. In: AAAI, vol. 34, pp. 6153–6161 (2020)

    Google Scholar 

  31. Wang, T., Isola, P.: Understanding contrastive representation learning through alignment and uniformity on the hypersphere. In: ICML, pp. 9929–9939. PMLR (2020)

    Google Scholar 

  32. Wang, X., He, X., Wang, M., Feng, F., Chua, T.S.: Neural graph collaborative filtering. In: SIGIR, pp. 165–174 (2019)

    Google Scholar 

  33. Wu, J., et al.: Self-supervised graph learning for recommendation. In: SIGIR, pp. 726–735 (2021)

    Google Scholar 

  34. Wu, L., He, X., Wang, X., Zhang, K., Wang, M.: A survey on accuracy-oriented neural recommendation: from collaborative filtering to information-rich recommendation. IEEE Trans. Knowl. Data Eng. (2022)

    Google Scholar 

  35. Wu, R., et al.: Cognitive modelling for predicting examinee performance. In: IJCAI (2015)

    Google Scholar 

  36. Yang, Y., et al.: GIKT: a graph-based interaction model for knowledge tracing. In: Hutter, F., Kersting, K., Lijffijt, J., Valera, I. (eds.) ECML PKDD 2020. LNCS (LNAI), vol. 12457, pp. 299–315. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67658-2_18

    Chapter  Google Scholar 

  37. Zhou, Y., et al.: Modeling context-aware features for cognitive diagnosis in student learning. In: KDD, pp. 2420–2428 (2021)

    Google Scholar 

  38. Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: WWW, pp. 2069–2080 (2021)

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from the National Key Research and Development Program of China (Grant No. 2021ZD0111802), the Fundamental Research Funds for the Central Universities (JZ2021HGTB0075), and the Open Project Program of the National Laboratory of Pattern Recognition (NLPR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Le Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, K., Yang, Y., Zhang, K., Wu, L., Liu, J., Li, X. (2022). Multi-Relational Cognitive Diagnosis for Intelligent Education. In: Fang, L., Povey, D., Zhai, G., Mei, T., Wang, R. (eds) Artificial Intelligence. CICAI 2022. Lecture Notes in Computer Science(), vol 13605. Springer, Cham. https://doi.org/10.1007/978-3-031-20500-2_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20500-2_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20499-9

  • Online ISBN: 978-3-031-20500-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics