Skip to main content

Multi-view Subspace Clustering with Joint Tensor Representation and Indicator Matrix Learning

  • Conference paper
  • First Online:
Artificial Intelligence (CICAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13605))

Included in the following conference series:

  • 1282 Accesses

Abstract

Multi-view subspace clustering (MVSC), as an extension of single-view subspace clustering, can exploit more information and has achieved excellent performance. In particular, the MVSC methods with sparse and low-rank basing have become a research priority as they can improve the clustering effect in an effective way. However, the following problems still exist: 1) focusing only on the connections between two views, ignoring the relationship of higher-order views; 2) performing representation matrix learning and indicator matrix learning separately, unable to get the clustering result in one step and obtain the global optimal solution. To tackle these issues, a novel sparsity and low-rank based MVSC algorithm is designed. It jointly conducts tensor representation learning and indicator matrix learning. More specifically, the Tensor Nuclear Norm (TNN) is utilized to exploit the relationships among higher-order views; besides, by incorporating the subsequent spectral clustering, the indicator matrix learning is conducted during the optimization framework. An iterative algorithm, the alternating direction method of multipliers (ADMM) is derived for the solving of the proposed algorithm. Experiments over five baseline datasets prove the competitiveness and excellence of the presented method with comparisons to other eight state-of-the-art algorithms.

Supported by National Natural Science Foundation of China (Grant No. 62102331, 62176125, 61772272), Natural Science Foundation of Sichuan Province (Grant No. 2022NSFSC0839), Doctoral Research Foundation of Southwest University of Science and Technology (Grant No. 22zx7110).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cui, Z., Jing, X., Zhao, P., Zhang, W., Chen, J.: A new subspace clustering strategy for ai-based data analysis in iot system. IEEE Internet Things J. (2021)

    Google Scholar 

  2. He, R., et al.: A kernel-power-density-based algorithm for channel multipath components clustering. IEEE Trans. Wireless Commun. 16(11), 7138–7151 (2017)

    Article  Google Scholar 

  3. Chowdhury, H.A., Bhattacharyya, D.K., Kalita, J.K.: Uicpc: centrality-based clustering for scrna-seq data analysis without user input. Comput. Biol. Med. 137, 104820 (2021)

    Article  Google Scholar 

  4. Cheng, Y., Cheng, M., Pang, T., Liu, S.: Using clustering analysis and association rule technology in cross-marketing. Complexity 2021, 1–11 (2021)

    Google Scholar 

  5. Mittal, M., Sharma, R.K., Singh, V.P., Kumar, R.: Adaptive threshold based clustering: a deterministic partitioning approach. Int. J. Inf. Syst. Modeling Des. (IJISMD) 10(1), 42–59 (2019)

    Article  Google Scholar 

  6. Murtagh, F., Contreras, P.: Algorithms for hierarchical clustering: an overview. Wiley Interdisciplinary Rev. Data Mining Knowl. Discovery 2(1), 86–97 (2012). https://doi.org/10.1002/widm.53

    Article  Google Scholar 

  7. Bagherinia, A., Minaei-Bidgoli, B., Hosseinzadeh, M., Parvin, H.: Reliability-based fuzzy clustering ensemble. Fuzzy Sets Syst. 413, 1–28 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  8. Campello, R.J., Kröger, P., Sander, J., Zimek, A.: Density-based clustering. Wiley Interdisc. Rev. Data Mining Knowl. Dis. 10(2), e1343 (2020)

    Google Scholar 

  9. Bouveyron, C., Brunet-Saumard, C.: Model-based clustering of high-dimensional data: a review. Comput. Stat. Data Anal. 71, 52–78 (2014) https://doi.org/10.1016/j.csda.2012.12.008,https://www.sciencedirect.com/science/article/pii/S0167947312004422

  10. Xue, X., Zhang, X., Feng, X., Sun, H., Chen, W., Liu, Z.: Robust subspace clustering based on non-convex low-rank approximation and adaptive kernel. Inf. Sci. 513, 190–205 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  11. Elhamifar, E., Vidal, R.: Sparse subspace clustering: algorithm, theory, and applications. IEEE Trans. Pattern Anal. Mach. Intell. 35(11), 2765–2781 (2013)

    Article  Google Scholar 

  12. Liu, G., Lin, Z., Yan, S., Sun, J., Yu, Y., Ma, Y.: Robust recovery of subspace structures by low-rank representation. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 171–184 (2012)

    Article  Google Scholar 

  13. Kumar, S., Dai, Y., Li, H.: Multi-body non-rigid structure-from-motion. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 148–156. IEEE (2016)

    Google Scholar 

  14. Tierney, S., Gao, J., Guo, Y.: Subspace clustering for sequential data. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1019–1026 (2014)

    Google Scholar 

  15. Kang, Z., et al.: Partition level multiview subspace clustering. Neural Netw. 122, 279–288 (2020)

    Article  Google Scholar 

  16. Yang, Z., Xu, Q., Zhang, W., Cao, X., Huang, Q.: Split multiplicative multi-view subspace clustering. IEEE Trans. Image Process. 28(10), 5147–5160 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  17. Yu, H., Zhang, T., Lian, Y., Cai, Y.: Co-regularized multi-view subspace clustering. In: Asian Conference on Machine Learning, pp. 17–32. PMLR (2018)

    Google Scholar 

  18. Zhang, X., Sun, H., Liu, Z., Ren, Z., Cui, Q., Li, Y.: Robust low-rank kernel multi-view subspace clustering based on the schatten p-norm and correntropy. Inf. Sci. 477, 430–447 (2019)

    Article  MATH  Google Scholar 

  19. Tolić, D., Antulov-Fantulin, N., Kopriva, I.: A nonlinear orthogonal non-negative matrix factorization approach to subspace clustering. Pattern Recogn. 82, 40–55 (2018)

    Article  Google Scholar 

  20. Zheng, Q., Zhu, J., Li, Z., Pang, S., Wang, J., Li, Y.: Feature concatenation multi-view subspace clustering. Neurocomputing 379, 89–102 (2020)

    Article  Google Scholar 

  21. Hu, Z., Nie, F., Chang, W., Hao, S., Wang, R., Li, X.: Multi-view spectral clustering via sparse graph learning. Neurocomputing 384, 1–10 (2020)

    Article  Google Scholar 

  22. Wang, H., Yang, Y., Liu, B., Fujita, H.: A study of graph-based system for multi-view clustering. Knowl.-Based Syst. 163, 1009–1019 (2019)

    Article  Google Scholar 

  23. Tang, C., Zhu, X., Liu, X., Li, M., Wang, P., Zhang, C., Wang, L.: Learning a joint affinity graph for multiview subspace clustering. IEEE Trans. Multimed. 21(7), 1724–1736 (2018)

    Article  Google Scholar 

  24. Xie, Y., Tao, D., Zhang, W., Liu, Y., Zhang, L., Qu, Y.: On unifying multi-view self-representations for clustering by tensor multi-rank minimization. Int. J. Comput. Vision 126(11), 1157–1179 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wu, J., Lin, Z., Zha, H.: Essential tensor learning for multi-view spectral clustering. IEEE Trans. Image Process. 28(12), 5910–5922 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  26. Huang, S., Xu, Z., Lv, J.: Adaptive local structure learning for document co-clustering. Knowl.-Based Syst. 148, 74–84 (2018)

    Article  Google Scholar 

  27. Brbić, M., Kopriva, I.: Multi-view low-rank sparse subspace clustering. Pattern Recogn. 73, 247–258 (2018)

    Article  Google Scholar 

  28. Liu, J., Liu, X., Yang, Y., Guo, X., Kloft, M., He, L.: Multiview subspace clustering via co-training robust data representation. IEEE Trans. Neural Networks Learn. Syst. (2021)

    Google Scholar 

  29. Zhang, C., Fu, H., Liu, S., Liu, G., Cao, X.: Low-rank tensor constrained multiview subspace clustering. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1582–1590 (2015)

    Google Scholar 

  30. Kumar, A., Rai, P., Daume, H.: Co-regularized multi-view spectral clustering. Adv. Neural. Inf. Process. Syst. 24, 1413–1421 (2011)

    Google Scholar 

  31. Cao, X., Zhang, C., Fu, H., Liu, S., Zhang, H.: Diversity-induced multi-view subspace clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 586–594 (2015)

    Google Scholar 

  32. Wang, S., et al.: Fast parameter-free multi-view subspace clustering with consensus anchor guidance. IEEE Trans. Image Process. 31, 556–568 (2022). https://doi.org/10.1109/TIP.2021.3131941

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhigui Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, J., Zhang, X., Liu, Z., Yue, Z., Huang, Z. (2022). Multi-view Subspace Clustering with Joint Tensor Representation and Indicator Matrix Learning. In: Fang, L., Povey, D., Zhai, G., Mei, T., Wang, R. (eds) Artificial Intelligence. CICAI 2022. Lecture Notes in Computer Science(), vol 13605. Springer, Cham. https://doi.org/10.1007/978-3-031-20500-2_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20500-2_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20499-9

  • Online ISBN: 978-3-031-20500-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics