Skip to main content

Story Generation Based on Multi-granularity Constraints

  • Conference paper
  • First Online:
Artificial Intelligence (CICAI 2022)

Abstract

Generating a coherent story is a challenging task in natural language processing, which requires maintaining the coherence of plots and inter-sentence semantics throughout the generated text. While existing generation models can generate texts with good intra-sentence coherence, it is still difficult to plan a coherent plot and inter-sentence semantics throughout the text. In this paper, we propose a novel multi-granularity constraints text generation model, which constrains at the token level and sentence level, respectively. For the plot incoherence issue, the token-level constraint is added, which is a new plot guidance method to maintain the coherence of the plot while avoiding the introduction of extra exposure bias. For the problem of semantic incoherence, an auxiliary task of modelling the semantic relations between sentences is designed on the sentence-level constraint. Extensive experiments have shown that our model can generate more coherent stories than the baselines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    SentenceBERT calculates the similarity based on the cosine between the sentence embedding vectors, and we normalize the result to [0, 1].

References

  1. Fan, A., Lewis, M., Dauphin, Y.: Hierarchical neural story generation. arXiv preprint arXiv:1805.04833 (2018)

  2. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., et al.: Language models are unsupervised multitask learners. OpenAI Blog 1(8), 9 (2019)

    Google Scholar 

  3. Li, J., Luong, M.T., Jurafsky, D.: A hierarchical neural autoencoder for paragraphs and documents. arXiv preprint arXiv:1506.01057 (2015)

  4. Shen, D., et al.: Towards generating long and coherent text with multi-level latent variable models. arXiv preprint arXiv:1902.00154 (2019)

  5. Guan, J., Huang, F., Zhao, Z., Zhu, X., Huang, M.: A knowledge-enhanced pretraining model for commonsense story generation. Trans. Assoc. Comput. Linguist. 8, 93–108 (2020)

    Article  Google Scholar 

  6. Xu, P., et al.: MEGATRON-CNTRL: controllable story generation with external knowledge using large-scale language models. arXiv preprint arXiv:2010.00840 (2020)

  7. Yao, L., Peng, N., Weischedel, R., Knight, K., Zhao, D., Yan, R.: Plan-and-write: towards better automatic storytelling. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 7378–7385 (2019)

    Google Scholar 

  8. Tan, B., Yang, Z., AI-Shedivat, M., Xing, E.P., Hu, Z.: Progressive generation of long text with pretrained language models. arXiv preprint arXiv:2006.15720 (2020)

  9. Ribeiro, M.T., Wu, T., Guestrin, C., Singh, S.: Beyond accuracy: behavioral testing of NLP models with checklist. arXiv preprint arXiv:2005.04118 (2020)

  10. Radford, A., Narasimhan, K., Salimans, T., Sutskever, I.: Improving language understanding by generative pre-training (2018)

    Google Scholar 

  11. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  12. Zhu, C., Xu, R., Zeng, M., Huang, X.: A hierarchical network for abstractive meeting summarization with cross-domain pretraining. arXiv preprint arXiv:2004.02016 (2020)

  13. Liu, C., Wang, P., Xu, J., Li, Z., Ye, J.: Automatic dialogue summary generation for customer service. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1957–1965 (2019)

    Google Scholar 

  14. Lewis, M., et al.: BART: denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. arXiv preprint arXiv:1910.13461 (2019)

  15. Raffel, C., et al.: Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019)

  16. Zhang, J., Zhao, Y., Saleh, M., Liu, P.: PEGASUS: pre-training with extracted gap-sentences for abstractive summarization. In: International Conference on Machine Learning, pp. 11328–11339. PMLR (2020)

    Google Scholar 

  17. Xu, J., Ren, X., Zhang, Y., Zeng, Q., Cai, X., Sun, X.: A skeleton-based model for promoting coherence among sentences in narrative story generation. arXiv preprint arXiv:1808.06945 (2018)

  18. Fan, A., Lewis, M., Dauphin, Y.: Strategies for structuring story generation. arXiv preprint arXiv:1902.01109 (2019)

  19. Goldfarb-Tarrant, S., Chakrabarty, T., Weischedel, R., Peng, N.: Content planning for neural story generation with aristotelian rescoring. arXiv preprint arXiv:2009.09870 (2020)

  20. Peng, N., Ghazvininejad, M., May, J., Knight, K.: Towards controllable story generation. In: Proceedings of the First Workshop on Storytelling, pp. 43–49 (2018)

    Google Scholar 

  21. Chandu, K., Prabhumoye, S., Salakhutdinov, R., Black, A.W.: “My way of telling a story”: persona based grounded story generation. In: Proceedings of the Second Workshop on Storytelling, pp. 11–21 (2019)

    Google Scholar 

  22. Huang, Q., Gan, Z., Celikyilmaz, A., Wu, D., Wang, J., He, X.: Hierarchically structured reinforcement learning for topically coherent visual story generation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 8465–8472 (2019)

    Google Scholar 

  23. Rose, S., Engel, D., Cramer, N., Cowley, W.: Automatic keyword extraction from individual documents. In: Text Mining: Applications and Theory, vol. 1, pp. 1–20 (2010)

    Google Scholar 

  24. Reimers, N., Gurevych, I.: Sentence-BERT: sentence embeddings using siamese BERT-networks. arXiv preprint arXiv:1908.10084 (2019)

  25. Mostafazadeh, N., et al.: A corpus and cloze evaluation for deeper understanding of commonsense stories. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 839–849 (2016)

    Google Scholar 

  26. Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: BLEU: a method for automatic evaluation of machine translation. In: Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, pp. 311–318 (2002)

    Google Scholar 

Download references

Acknowledgments

This work was funded by Chongqing Technology Innovation and Application Development (Major Theme Special) Project, Development and Application of Cloud Service Platform for Intelligent Detection and Monitoring of Industrial Equipment, NO. cstc2019jscx-zdztzx0043.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiaqiang Wan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guo, Z., Wan, J., Tang, H., Lu, Y. (2022). Story Generation Based on Multi-granularity Constraints. In: Fang, L., Povey, D., Zhai, G., Mei, T., Wang, R. (eds) Artificial Intelligence. CICAI 2022. Lecture Notes in Computer Science(), vol 13606. Springer, Cham. https://doi.org/10.1007/978-3-031-20503-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20503-3_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20502-6

  • Online ISBN: 978-3-031-20503-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics