Skip to main content

Interactive Fusion Network with Recurrent Attention for Multimodal Aspect-based Sentiment Analysis

  • Conference paper
  • First Online:
Artificial Intelligence (CICAI 2022)

Abstract

The goal of multimodal aspect-based sentiment analysis is to comprehensively utilize data from different modalities (e.g.,, text and image) to identify aspect-specific sentiment polarity. Existing works have proposed many methods for fusing text and image information and achie-ved satisfactory results. However, they fail to filter noise in the image information and ignore the progressive learning process of sentiment features. To solve these problems, we propose an interactive fusion network with recurrent attention. Specifically, we first use two encoders to encode text and image data, respectively. Then we use the attention mechanism to obtain the semantic information of the image at the token level. Next, we employ GRU to filter out the noise in the image and fuse information from different modalities. Finally, we design a decoder with recurrent attention to progressively learn aspect-specific sentiment features for classification. The results on two Twitter datasets show that our method outperforms all baselines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The source code is publicly released at https://github.com/0wj0/IFNRA.

  2. 2.

    We create an instance of GRU cell for each time step.

  3. 3.

    https://huggingface.co/google/bert_uncased_L-12_H-768_A-12.

  4. 4.

    https://github.com/MILVLG/bottom-up-attention.pytorch.

  5. 5.

    https://huggingface.co/bert-large-uncased.

  6. 6.

    https://huggingface.co/vinai/bertweet-base.

  7. 7.

    https://github.com/facebookresearch/detectron2/blob/main/configs/COCO-Detection/faster_rcnn_R_101_FPN_3x.yaml.

  8. 8.

    https://download.pytorch.org/models/resnet50-0676ba61.pth.

References

  1. Anderson, P., et al.: Bottom-up and top-down attention for image captioning and visual question answering. In: Proceedings of CVPR, pp. 6077–6086 (2018). https://openaccess.thecvf.com/content_cvpr_2018/papers/Anderson_Bottom-Up_and_Top-Down_CVPR_2018_paper.pdf

  2. Cho, K., van Merriënboer, D., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. In: Proceedings of EMNLP, pp. 1724–1734 (2014). https://aclanthology.org/D14-1179.pdf

  3. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of NAACL, pp. 4171–4186 (2019). https://aclanthology.org/N19-1423/

  4. Dong, L., Wei, F., Tan, C., Tang, D., Zhou, M., Xu, K.: Adaptive recursive neural network for target-dependent twitter sentiment classification. In: Proceedings of ACL, pp. 49–54 (2014). https://aclanthology.org/P14-2009.pdf

  5. Fan, F., Feng, Y., Zhao, D.: Multi-grained attention network for aspect-level sentiment classification. In: Proceedings of EMNLP, pp. 3433–3442 (2018). https://aclanthology.org/D18-1380/?ref=githubhelp.com

  6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of CVPR, pp. 770–778 (2016). https://openaccess.thecvf.com/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf

  7. Jiang, L., Yu, M., Zhou, M., Liu, X., Zhao, T.: Target-dependent twitter sentiment classification. In: Proceedings of ACL, pp. 151–160 (2011). https://aclanthology.org/P11-1016.pdf

  8. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Proceedings of ICLR (Poster) (2015). https://openreview.net/forum?id=8gmWwjFyLj

  9. Kiritchenko, S., Zhu, X., Cherry, C., Mohammad, S.: NRC-Canada-2014: detecting aspects and sentiment in customer reviews. In: Proceedings of SemEval, pp. 437–442 (2014). https://aclanthology.org/S14-2076.pdf

  10. Mohammad, S., Kiritchenko, S., Zhu, X.: NRC-Canada: building the state-of-the-art in sentiment analysis of tweets. In: Proceedings of SemEval, pp. 321–327 (2013). https://aclanthology.org/S13-2053.pdf

  11. Nguyen, D.Q., Vu, T., Nguyen, A.T.: BERTweet: a pre-trained language model for English Tweets. In: Proceedings of EMNLP, pp. 9–14 (2020). https://aclanthology.org/2020.emnlp-demos.2.pdf

  12. Phan, M.H., Ogunbona, P.O.: Modelling context and syntactical features for aspect-based sentiment analysis. In: Proceedings of ACL, pp. 3211–3220 (2020). https://aclanthology.org/2020.acl-main.293/?ref=githubhelp.com

  13. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: Towards real-time object detection with region proposal networks. In: NIPS 28 (2015)

    Google Scholar 

  14. Tang, D., Qin, B., Feng, X., Liu, T.: Effective LSTMs for target-dependent sentiment classification. In: Proceedings of COLING, pp. 3298–3307 (2016). https://aclanthology.org/C16-1311/?ref=githubhelp.com

  15. Vaswani, A., et al.: Attention is all you need. In: NIPS 30 (2017). https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

  16. Wagner, J., et al.: DCU: aspect-based polarity classification for Semeval task 4. In: Proceedings of COLING, pp. 223–229 (2014). https://aclanthology.org/S14-2.pdf#page=243

  17. Wang, J., et al.: Aspect sentiment classification with both word-level and clause-level attention networks. In: Proceedings of IJCAI, vol. 2018, pp. 4439–4445 (2018). www.ijcai.org/proceedings/2018/0617.pdf

  18. Xu, N., Mao, W., Chen, G.: Multi-interactive memory network for aspect based multimodal sentiment analysis. In: Proceedings of AAAI, vol. 33, pp. 371–378 (2019). https://ojs.aaai.org/index.php/AAAI/article/view/3807/3685

  19. Yu, J., Jiang, J.: Adapting BERT for target-oriented multimodal sentiment classification. In: Proceedings of IJCAI (2015). www.ijcai.org/Proceedings/2019/0751.pdf

  20. Zadeh, A., Chen, M., Poria, S., Cambria, E., Morency, L.P.: Tensor fusion network for multimodal sentiment analysis. In: Proceedings of EMNLP, pp. 1103–1114 (2017)

    Google Scholar 

  21. Zhang, Z., Wang, Z., Li, X., Liu, N., Guo, B., Yu, Z.: ModalNet: an aspect-level sentiment classification model by exploring multimodal data with fusion discriminant attentional network. World Wide Web 24(6), 1957–1974 (2021). https://link.springer.com/article/10.1007/s11280-021-00955-7

  22. Zhou, J., Zhao, J., Huang, J.X., Hu, Q.V., He, L.: MASAD: a large-scale dataset for multimodal aspect-based sentiment analysis. Neurocomputing 455, 47–58 (2021). www.sciencedirect.com/science/article/pii/S0925231221007931

Download references

Acknowledgments.

This work was partially supported by the National Natural Science Foundation of China (61876053, 62006062, 62176076), Shenzhen Foundational Research Funding (JCYJ20200109113441941 and JCYJ2021032411 5614039), Joint Lab of HIT and KONKA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruifeng Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, J., Wang, Q., Wen, Z., Liang, X., Xu, R. (2022). Interactive Fusion Network with Recurrent Attention for Multimodal Aspect-based Sentiment Analysis. In: Fang, L., Povey, D., Zhai, G., Mei, T., Wang, R. (eds) Artificial Intelligence. CICAI 2022. Lecture Notes in Computer Science(), vol 13606. Springer, Cham. https://doi.org/10.1007/978-3-031-20503-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20503-3_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20502-6

  • Online ISBN: 978-3-031-20503-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics