Skip to main content

Differential Evolution Constrained Optimization for Peak Reduction

  • Conference paper
  • First Online:
Artificial Intelligence (CICAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13606))

Included in the following conference series:

  • 1416 Accesses

Abstract

Peak-to-average power ratio (PAPR) reduction is a major practical problem in Orthogonal Frequency Division Multiplexing (OFDM) systems. Many techniques, for example, use convex optimization to reduce the PAPR of OFDM signals. Existing methods either minimize the PAPR under the error vector magnitude (EVM) constraint or minimize the EVM under the PAPR constraint. Because of the complexities of these respective problems, researchers have proposed an interior point method with a computational complexity of \(O(N^3)\). In this paper, we define a new problem that aims to find a feasible solution under the EVM and PAPR constraints, and propose a Differential Evolution Peak Reduction (DEPR) algorithm to deal with it. The motivation of the new problem lies in the fact that in applications, finding a feasible solution efficiently is more desirable than finding an optimal one exhaustively. The proposed DE algorithm minimizes the PAPR through a parallel direct search in the noise vector space. The computational complexity of the new algorithm is \(O(N{\log _2}N)\). Simulation results show that the number of computational steps of the new approach are \(10\%\) less than those of the convex optimization approaches without degrading the bit error rate (BER). Three empirical values were also obtained to ensure the efficiency and effectiveness of our algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aggarwal, A., Meng, T.H.: Minimizing the peak-to-average power ratio of OFDM signals using convex optimization. IEEE Trans. Signal Process. 54(8), 3099–3110 (2006)

    Article  MATH  Google Scholar 

  2. Chen, J.C., Li, C.P.: Tone reservation using near-optimal peak reduction tone set selection algorithm for PAPR reduction in OFDM systems. IEEE Signal Process. Lett. 17(11), 933–936 (2010)

    Article  Google Scholar 

  3. Chen, L., Fang, Y., Wang, M.: PAPR reduction in optical OFDM systems using asymmetrically clipping and filtering technique. J. Comput. Inf. Syst. 8(7), 2733–2740 (2012)

    Google Scholar 

  4. Cuteanu, V., Isar, A.: PAPR reduction of OFDM signals using hybrid clipping-companding scheme with sigmoid functions. In: International Conference on Applied Electronics, pp. 75–78 (2011)

    Google Scholar 

  5. Eklund, C., Marks, R.B., Ponnuswamy, S.: WirelessMAN: inside the IEEE 802.16 Standard for Wireless Metropolitan Area Networks. Standards Information Network (2006)

    Google Scholar 

  6. Gatherer, A., Polley, M.: Controlling clipping probability in DMT transmission. In: Conference Record of the Thirty-First Asilomar Conference on Signals, Systems & Computers, 1997, vol. 1, pp. 578–584. IEEE (1997)

    Google Scholar 

  7. Gay, M., Lampe, A., Breiling, M.: PAPR reduction in OFDM using selected mapping with adaptive clipping at the transmitter, and sparse reconstruction at the receiver. In: Proceedings of OFDM 2014; 18th International OFDM Workshop 2014 (InOWo 2014), pp. 1–8. VDE (2014)

    Google Scholar 

  8. Han, S.H., Cioffi, J.M., Lee, J.H.: Tone injection with hexagonal constellation for peak-to-average power ratio reduction in OFDM. IEEE Commun. Lett. 10(9), 646–648 (2006)

    Article  Google Scholar 

  9. Hou, J., Ge, J., Li, J.: Peak-to-average power ratio reduction of OFDM signals using pts scheme with low computational complexity. IEEE Trans. Broadcast. 57(1), 143–148 (2011)

    Article  Google Scholar 

  10. Joshi, A., Saini, D.S.: Performance analysis and PAPR reduction of coded OFDM (with RS-CC and turbo coding) system using modified SLM, PTS and DHT precoding in fading environments. WSEAS Trans. Commun. 12(1), 14–28 (2013)

    Google Scholar 

  11. Kang, B.M., Ryu, H.G., Ryu, S.B.: A PAPR reduction method using new ace (active constellation extension) with higher level constellation. In: IEEE International Conference on Signal Processing and Communications, 2007. ICSPC 2007, pp. 724–727. IEEE (2007)

    Google Scholar 

  12. Kang, S.G., Kim, J.G., Joo, E.K.: A novel subblock partition scheme for partial transmit sequence OFDM. IEEE Trans. Broadcast. 45(3), 333–338 (1999)

    Article  Google Scholar 

  13. Krongold, B.S., Jones, D.L.: Par reduction in OFDM via active constellation extension. IEEE Trans. Broadcast. 49(3), 258–268 (2003)

    Article  Google Scholar 

  14. Krongold, B.S., Jones, D.L.: An active-set approach for OFDM par reduction via tone reservation. IEEE Trans. Signal Process. 52(2), 495–509 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Latinovic, Z., Bar-Ness, Y.: SFBC MIMO-OFDM peak-to-average power ratio reduction by polyphase interleaving and inversion. IEEE Commun. Lett. 10(4), 266–268 (2006)

    Article  Google Scholar 

  16. Luo, Z.Q., Yu, W.: An introduction to convex optimization for communications and signal processing. IEEE J. Sel. Areas Commun. 24(8), 1426–1438 (2006)

    Article  Google Scholar 

  17. Mohani, S.P., Sarkar, S., Sutaone, M.S.: Adaptive amplitude clipping PAPR reduction technique using extended peak reduction tone set. Networking Commun. Eng. 5(5), 256–259 (2013)

    Google Scholar 

  18. Naeiny, M.F., Marvasti, F.: Selected mapping algorithm for PAPR reduction of space-frequency coded OFDM systems without side information. IEEE Trans. Veh. Technol. 60(3), 1211–1216 (2011)

    Article  Google Scholar 

  19. Sakran, H.Y., Shokair, M.M., Elazm, A.A.: Combined interleaving and companding for PAPR reduction in OFDM systems. Progress in Electromagn. Res. C 6, 67–78 (2009)

    Article  Google Scholar 

  20. Shao, Y., Chi, N., Fan, J., Fang, W.: Generation of 16-QAM-OFDM signals using selected mapping method and its application in optical millimeter-wave access system. IEEE Photon. Technol. Lett. 24(15), 1301–1303 (2012)

    Article  Google Scholar 

  21. Sharma, C., Sharma, P.K., Tomar, S., Gupta, A.: A modified iterative amplitude clipping and filtering technique for PAPR reduction in OFDM systems. In: 2011 International Conference on Emerging Trends in Networks and Computer Communications (ETNCC), pp. 365–368. IEEE (2011)

    Google Scholar 

  22. Sharma, C., Tomar, S.K., Gupta, A.: PAPR reduction in OFDM system using adapting coding technique with pre distortion method. WSEAS Trans. Comput. 9, 255–262 (2011)

    Google Scholar 

  23. Tellado, J., Cioffi, J.M.: Efficient algorithms for reducing par in multicarrier systems. In: 1998 IEEE International Symposium on Information Theory, 1998. Proceedings, p. 191. IEEE (1998)

    Google Scholar 

  24. Tuna, C., Jones, D.L.: Tone injection with aggressive clipping projection for OFDM PAPR reduction. In: 2010 IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), pp. 3278–3281. IEEE (2010)

    Google Scholar 

  25. Varahram, P., Al-Azzo, W.F., Ali, B.M.: A low complexity partial transmit sequence scheme by use of dummy signals for PAPR reduction in OFDM systems. IEEE Trans. Consumer Electr. 56(4), 2416–2420 (2010)

    Article  Google Scholar 

  26. Wang, C., Leung, S.H.: Par reduction in ofdm through convex programming. In: IEEE International Conference on Acoustics, Speech and Signal Processing, 2008. ICASSP 2008, pp. 3597–3600. IEEE (2008)

    Google Scholar 

  27. Wang, Y., Luo, Z.: Optimized iterative clipping and filtering for PAPR reduction of OFDM signals. IEEE Trans. Commun. 59(1), 33–37 (2011)

    Article  Google Scholar 

  28. Wang, Y.C., Yi, K.C.: Convex optimization method for quasi-constant peak-to-average power ratio of OFDM signals. IEEE Signal Process. Lett. 16(6), 509–512 (2009)

    Article  Google Scholar 

  29. Wang, Y., Chen, W., Tellambura, C.: Genetic algorithm based nearly optimal peak reduction tone set selection for adaptive amplitude clipping PAPR reduction. IEEE Trans. Broadcast. 58(3), 462–471 (2012)

    Article  Google Scholar 

  30. Wong, C.Y., Cheng, R.S., Lataief, K.B., Murch, R.D.: Multiuser OFDM with adaptive subcarrier, bit, and power allocation. IEEE J. Sel. Areas Commun. 17(10), 1747–1758 (1999)

    Article  Google Scholar 

  31. Xu, L., Chen, D.: ADC spectral testing allowing amplitude clipping. In: 2013 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), pp. 1526–1529. IEEE (2013)

    Google Scholar 

  32. Zhong, X., Qi, J., Bao, J.: Using clipping and filtering algorithm to reduce PAPR of OFDM system. In: 2011 International Conference on Electronics, Communications and Control (ICECC), pp. 1763–1766. IEEE (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, M., Wen, T., Jiang, X., Zhang, A. (2022). Differential Evolution Constrained Optimization for Peak Reduction. In: Fang, L., Povey, D., Zhai, G., Mei, T., Wang, R. (eds) Artificial Intelligence. CICAI 2022. Lecture Notes in Computer Science(), vol 13606. Springer, Cham. https://doi.org/10.1007/978-3-031-20503-3_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20503-3_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20502-6

  • Online ISBN: 978-3-031-20503-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics