Skip to main content

Intelligence Quotient Scores Prediction in rs-fMRI via Graph Convolutional Regression Network

  • Conference paper
  • First Online:
Artificial Intelligence (CICAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13606))

Included in the following conference series:

  • 1542 Accesses

Abstract

The intelligence quotient (IQ) scores prediction in resting-state functional magnetic resonance imaging (rs-fMRI) imagery is an essential biomarker in understanding autism spectrum disorder (ASD)’ mechanisms and in diagnosing and treating the disease. However, existing intelligence quotient prediction methods often produce unsatisfactory results due to the complexity of brain functional connections and topology variations. Besides, the important brain regions which contribute most to IQ predictions are often neglected for priority extraction. In this paper, we propose a novel Graph Convolutional Regression Network for IQ prediction that consists of an attention branch and a global branch, which can effectively capture the topological information of the brain network. The attention branch can learn the brain regions’ importance based on a self-attention mechanism and the global branch can learn representative features of each brain region in the brain by multilayer GCN layers. The proposed method is thoroughly validated using ASD subjects and neurotypical (NT) subjects for full-scale intelligence and verbal intelligence quotient prediction. The experimental results demonstrate that the proposed method generally outperforms other state-of-the-art algorithms for various metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://preprocessed-connectomes-project.org/abide.

  2. 2.

    https://github.com/esfinn/cpm_tutorial.

  3. 3.

    https://github.com/lukecavabarrett/pna.

  4. 4.

    https://github.com/basiralab/RegGNN.

  5. 5.

    https://github.com/chrsmrrs/k-gnn.

  6. 6.

    https://github.com/williamleif/GraphSAGE.

References

  1. Bedford, S.A., et al.: Large-scale analyses of the relationship between sex, age and intelligence quotient heterogeneity and cortical morphometry in autism spectrum disorder. Mol. Psychiatry 25(3), 614–628 (2020)

    Article  Google Scholar 

  2. Benesty, J., Chen, J., Huang, Y., Cohen, I.: Pearson correlation coefficient. In: Benesty, J., Chen, J., Huang, Y., Cohen, I. (eds.) Noise Reduction in Speech Processing, vol. 2, pp. 1–4. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00296-0_5

    Chapter  Google Scholar 

  3. Corso, G., Cavalleri, L., Beaini, D., Liò, P., Veličković, P.: Principal neighbourhood aggregation for graph nets. Adv. Neural. Inf. Process. Syst. 33, 13260–13271 (2020)

    Google Scholar 

  4. Critchley, H.D., et al.: The functional neuroanatomy of social behaviour: changes in cerebral blood flow when people with autistic disorder process facial expressions. Brain 123(11), 2203–2212 (2000)

    Article  Google Scholar 

  5. Dryburgh, E., McKenna, S., Rekik, I.: Predicting full-scale and verbal intelligence scores from functional connectomic data in individuals with autism spectrum disorder. Brain Imaging Behav. 14(5), 1769–1778 (2020)

    Article  Google Scholar 

  6. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  7. Hanik, M., Demirtaş, M.A., Gharsallaoui, M.A., Rekik, I.: Predicting cognitive scores with graph neural networks through sample selection learning. Brain Imaging Behav. 1–16 (2021)

    Google Scholar 

  8. Huang, S.G., Xia, J., Xu, L., Qiu, A.: Spatio-temporal directed acyclic graph learning with attention mechanisms on brain functional time series and connectivity. Med. Image Anal. 77, 102370 (2022)

    Article  Google Scholar 

  9. Huang, Z., et al.: Parkinson’s disease classification and clinical score regression via united embedding and sparse learning from longitudinal data. IEEE Trans. Neural Netw. Learn. Syst. (2021)

    Google Scholar 

  10. Jung-Beeman, M., et al.: Neural activity when people solve verbal problems with insight. PLoS Biol. 2(4), e97 (2004)

    Article  Google Scholar 

  11. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  12. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  13. Li, D., Karnath, H.O., Xu, X.: Candidate biomarkers in children with autism spectrum disorder: a review of MRI studies. Neurosci. Bull. 33(2), 219–237 (2017)

    Article  Google Scholar 

  14. Li, T., et al.: Pot-GAN: pose transform GAN for person image synthesis. IEEE Trans. Image Process. 30, 7677–7688 (2021)

    Article  Google Scholar 

  15. Li, X., et al.: BrainGNN: interpretable brain graph neural network for fMRI analysis. Med. Image Anal. 74, 102233 (2021)

    Article  Google Scholar 

  16. Morris, C., et al.: Weisfeiler and leman go neural: higher-order graph neural networks. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 4602–4609 (2019)

    Google Scholar 

  17. Park, B.Y., Hong, J., Lee, S.H., Park, H.: Functional connectivity of child and adolescent attention deficit hyperactivity disorder patients: correlation with IQ. Front. Hum. Neurosci. 10, 565 (2016)

    Google Scholar 

  18. Peraza, L.R., et al.: fMRI resting state networks and their association with cognitive fluctuations in dementia with Lewy bodies. NeuroImage Clin. 4, 558–565 (2014)

    Google Scholar 

  19. Plitt, M., Barnes, K.A., Wallace, G.L., Kenworthy, L., Martin, A.: Resting-state functional connectivity predicts longitudinal change in autistic traits and adaptive functioning in autism. Proc. Natl. Acad. Sci. 112(48), E6699–E6706 (2015)

    Article  Google Scholar 

  20. Press, C., Weiskopf, N., Kilner, J.M.: Dissociable roles of human inferior frontal gyrus during action execution and observation. Neuroimage 60(3), 1671–1677 (2012)

    Article  Google Scholar 

  21. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  22. Shen, X., et al.: Using connectome-based predictive modeling to predict individual behavior from brain connectivity. Nat. Protocols 12(3), 506–518 (2017)

    Google Scholar 

  23. Song, R., Zhang, W., Zhao, Y., Liu, Y.: Unsupervised multi-view CNN for salient view selection and 3D interest point detection. Int. J. Comput. Vision 130(5), 1210–1227 (2022)

    Article  Google Scholar 

  24. Song, R., Zhang, W., Zhao, Y., Liu, Y., Rosin, P.L.: Mesh saliency: an independent perceptual measure or a derivative of image saliency? In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8853–8862 (2021)

    Google Scholar 

  25. Tzourio-Mazoyer, N., et al.: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15(1), 273–289 (2002)

    Article  Google Scholar 

  26. Xia, L., et al.: A nested parallel multiscale convolution for cerebrovascular segmentation. Med. Phys. 48(12), 7971–7983 (2021)

    Article  Google Scholar 

  27. Xia, L., et al.: 3D vessel-like structure segmentation in medical images by an edge-reinforced network. Med. Image Anal. 102581 (2022)

    Google Scholar 

  28. Xiao, L., et al.: Multi-hypergraph learning-based brain functional connectivity analysis in fMRI data. IEEE Trans. Med. Imaging 39(5), 1746–1758 (2019)

    Article  Google Scholar 

  29. Yao, D., et al.: A mutual multi-scale triplet graph convolutional network for classification of brain disorders using functional or structural connectivity. IEEE Trans. Med. Imaging 40(4), 1279–1289 (2021)

    Article  Google Scholar 

  30. Yoshida, K., et al.: Prediction of clinical depression scores and detection of changes in whole-brain using resting-state functional MRI data with partial least squares regression. PLoS ONE 12(7), e0179638 (2017)

    Article  Google Scholar 

  31. Zhang, H., et al.: Cerebrovascular segmentation in MRA via reverse edge attention network. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12266, pp. 66–75. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59725-2_7

    Chapter  Google Scholar 

  32. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2881–2890 (2017)

    Google Scholar 

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of China under Grants 62076148 and 61991411, the Young Taishan Scholars Program of Shandong Province No. tsqn201909029, and the Qilu Young Scholars Program of Shandong University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ran Song .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, H., Song, R., Wang, D., Wang, L., Zhang, W. (2022). Intelligence Quotient Scores Prediction in rs-fMRI via Graph Convolutional Regression Network. In: Fang, L., Povey, D., Zhai, G., Mei, T., Wang, R. (eds) Artificial Intelligence. CICAI 2022. Lecture Notes in Computer Science(), vol 13606. Springer, Cham. https://doi.org/10.1007/978-3-031-20503-3_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20503-3_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20502-6

  • Online ISBN: 978-3-031-20503-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics