Skip to main content

A Genetic Algorithm for Causal Discovery Based on Structural Causal Model

  • Conference paper
  • First Online:
Artificial Intelligence (CICAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13606))

Included in the following conference series:

  • 1540 Accesses

Abstract

With a large amount of data accumulated in many fields, causal discovery based on observational data is gradually emerging, which is considered to be the basis for realizing strong artificial intelligence. However, the existing main causal discovery methods, including constraint-based methods, structural causal model based methods, and scoring-based methods, cannot find real causal relations accurately and quickly. In this paper, we propose a causal discovery method based on genetic algorithm, which combines structural causal model, scoring method, and genetic search algorithm. The core of our method is to divide the causal relation discovery process into the evaluation phase based on the features of structural causal model and the search phase based on the genetic algorithm. In the evaluation phase, the causal graph is evaluated from three aspects: model deviation, noise independence, and causal graph cyclicity, which effectively ensures the accuracy of causal discovery. In the search phase, an efficient random search is designed based on genetic algorithm, which greatly improves the causal discovery efficiency. This paper implements the corresponding algorithm, namely SCM-GA (Structural Causal Model based Genetic Algorithm), and conducts experiments on several simulated datasets and one widely used real-scene dataset. The experiments compare five classic baseline algorithms, and the results show that SCM-GA has achieved great improvement in accuracy, applicability, and efficiency. Especially on the real scene dataset, SCM-GA achieves better results than the state-of-the-art algorithm, with similar SHD (Structure Hamming Distance) value, 40% higher recall rate, and 83.3% shorter running time.

Supported by National Science and Technology Major Project (Grant No. 2020AAA0109401).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It is commonly referred to as causal discovery, this abbreviation is also used in related literature, so in this article we do the same.

References

  1. Cai, R.C., Chen, W., Zhang, K., Hao, Z.F.: A survey on non-temporal series observational data based causal discovery (in Chinese). Chin. J. Comput. 40(6), 1470–1490 (2017)

    Google Scholar 

  2. Cai, R.C., Hao, Z.F.: Casual discovery in big data (in Chinese). Science Press (2018)

    Google Scholar 

  3. Chickering, D.M.: Learning Bayesian networks is NP-complete. In: Fisher, D., Lenz, H.J. (eds.) Learning from Data. Lecture Notes in Statistics, vol. 112, pp. 121–130. Springer, New York, NY (1996). https://doi.org/10.1007/978-1-4612-2404-4_12

  4. Chickering, D.M.: Optimal structure identification with greedy search. J. Mach. Learn. Res. 3(3), 507–554 (2002). https://doi.org/10.1162/153244303321897717

  5. Chickering, M., Heckerman, D., Meek, C.: Large-sample learning of Bayesian networks is NP-hard. J. Mach. Learn. Res. 5, 1287–1330 (2004)

    MathSciNet  MATH  Google Scholar 

  6. Glymour, C., Zhang, K., Spirtes, P.: Review of causal discovery methods based on graphical models. Front. Genet. 10, 524 (2019). https://doi.org/10.3389/fgene.2019.00524

    Article  Google Scholar 

  7. Goudet, O., Kalainathan, D., Caillou, P., Guyon, I., Lopez-Paz, D., Sebag, M.: Learning functional causal models with generative neural networks. In: Escalante, H.J., et al. (eds.) Explainable and Interpretable Models in Computer Vision and Machine Learning. TSSCML, pp. 39–80. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98131-4_3

    Chapter  Google Scholar 

  8. Gretton, A., Herbrich, R., Smola, A., Bousquet, O., Schölkopf, B., et al.: Kernel methods for measuring independence. J. Mach. Learn. Res. 6, 2075–2129 (2005). https://doi.org/10.1007/s10846-005-9001-9

    Article  MathSciNet  MATH  Google Scholar 

  9. Haughton, D.M.: On the choice of a model to fit data from an exponential family. Ann. Stat. 16, pp. 342–355 (1988). https://doi.org/10.1214/aos/1176350709

  10. He, Y.-B., Geng, Z., Liang, X.: Learning causal structures based on Markov equivalence class. In: Jain, S., Simon, H.U., Tomita, E. (eds.) ALT 2005. LNCS (LNAI), vol. 3734, pp. 92–106. Springer, Heidelberg (2005). https://doi.org/10.1007/11564089_9

    Chapter  MATH  Google Scholar 

  11. He, Y., Cui, P., Shen, Z., Xu, R., Liu, F., Jiang, Y.: Daring: differentiable causal discovery with residual independence. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery Data Mining, pp. 596–605 (2021). https://doi.org/10.1145/3447548.3467439

  12. Hoyer, P., Janzing, D., Mooij, J.M., Peters, J., Schölkopf, B.: Nonlinear causal discovery with additive noise models. In: Advances in Neural Information Processing Systems 21 (2008)

    Google Scholar 

  13. Kitson, N.K., Constantinou, A.C., Guo, Z., Liu, Y., Chobtham, K.: A survey of Bayesian network structure learning. arXiv preprint arXiv:2109.11415 (2021)

  14. Lachapelle, S., Brouillard, P., Deleu, T., Lacoste-Julien, S.: Gradient-based neural DAG learning. In: International Conference on Learning Representations (2020)

    Google Scholar 

  15. Mattmann, C.A.: A vision for data science. Nature 493(7433), 473–475 (2013). https://doi.org/10.1038/493473a

    Article  Google Scholar 

  16. Peters, J., Janzing, D., Schölkopf, B.: Elements of causal inference: foundations and learning algorithms. The MIT Press (2017)

    Google Scholar 

  17. Peters, J., Mooij, J.M., Janzing, D., Schölkopf, B.: Causal discovery with continuous additive noise models. J. Mach. Learn. Res. 15(58), 2009–2053 (2014). http://hdl.handle.net/2066/130001

  18. Sachs, K., Perez, O., Pe’er, D., Lauffenburger, D.A., Nolan, G.P.: Causal protein-signaling networks derived from multiparameter single-cell data. Science 308(5721), 523–529 (2005). https://doi.org/10.1126/science.1105809

    Article  Google Scholar 

  19. Shimizu, S., Hoyer, P.O., Hyvärinen, A., Kerminen, A., Jordan, M.: A linear non-gaussian acyclic model for causal discovery. J. Mach. Learn. Res. 7(10), 2003–2030 (2006). https://doi.org/10.1007/s10883-006-0005-y

  20. Spirtes, P., Glymour, C., Scheines, R.: Causality from probability (1989)

    Google Scholar 

  21. Spirtes, P., Glymour, C.N., Scheines, R., Heckerman, D.: Causation, prediction, and search. MIT press (2000)

    Google Scholar 

  22. Verma, T.S., Pearl, J.: Equivalence and synthesis of causal models. In: Probabilistic and Causal Inference: the works of Judea Pearl, pp. 221–236 (2022). https://doi.org/10.1145/3501714.3501732

  23. Wang, X., Dunson, D., Leng, C.: No penalty no tears: least squares in high-dimensional linear models. In: International Conference on Machine Learning, pp. 1814–1822. PMLR (2016)

    Google Scholar 

  24. Zhang, K., Hyvärinen, A.: Causality discovery with additive disturbances: an information-theoretical perspective. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.) ECML PKDD 2009. LNCS (LNAI), vol. 5782, pp. 570–585. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04174-7_37

    Chapter  Google Scholar 

  25. Zhang, K., Hyvärinen, A.: Distinguishing causes from effects using nonlinear acyclic causal models. In: Causality: Objectives and Assessment, pp. 157–164. PMLR (2010)

    Google Scholar 

  26. Zhang, K., Hyvarinen, A.: On the identifiability of the post-nonlinear causal model. arXiv preprint arXiv:1205.2599 (2012)

  27. Zheng, X., Aragam, B., Ravikumar, P.K., Xing, E.P.: DAGs with no tears: continuous optimization for structure learning. In: Advances in Neural Information Processing Systems 31 (2018)

    Google Scholar 

  28. Zhou, S.: Thresholding procedures for high dimensional variable selection and statistical estimation. In: Advances in Neural Information Processing Systems 22 (2009)

    Google Scholar 

  29. Zhu, S., Ng, I., Chen, Z.: Causal discovery with reinforcement learning. In: International Conference on Learning Representations (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenpin Jiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, Z., Liu, K., Jiao, W. (2022). A Genetic Algorithm for Causal Discovery Based on Structural Causal Model. In: Fang, L., Povey, D., Zhai, G., Mei, T., Wang, R. (eds) Artificial Intelligence. CICAI 2022. Lecture Notes in Computer Science(), vol 13606. Springer, Cham. https://doi.org/10.1007/978-3-031-20503-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20503-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20502-6

  • Online ISBN: 978-3-031-20503-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics