Skip to main content

3D Human Pose Estimation Based on Multi-feature Extraction

  • Conference paper
  • First Online:
Artificial Intelligence (CICAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13606))

Included in the following conference series:

  • 1909 Accesses

Abstract

As an important computer vision task, 3D human pose estimation has received widespread attention and many applications have been derived from it. Most previous methods address this task by using a 3D pictorial structure model which is inefficient due to the huge state space. We propose a novel approach to solve this problem. Our key idea is to learn confidence weights of each joint from the input image through a simple neutral network. We also extract the confidence matrix of heatmaps which reflects its feature quality in order to enhance the feature quality in occluded views. Our approach is end-to-end differentiable which can improve the efficiency and robustness. We evaluate the approach on two public datasets including Human3.6M and Occlusion-Person which achieves significant performance gains compare with the state-of-the-art.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bridgeman, L., Volino. M., Guillemaut, J.Y., et al.: Multi-person 3D pose estimation and tracking in sports. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE (2019)

    Google Scholar 

  2. Tu, H., Wang, C., Zeng, W.: VoxelPose: towards multi-camera 3D human pose estimation in wild environment. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 197–212. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_12

    Chapter  Google Scholar 

  3. Zhe, C., Simon, T., Wei, S.E., et al.: Realtime multi-person 2D pose estimation using part affinity fields. IEEE (2017)

    Google Scholar 

  4. He, K., Gkioxari, G., Dollár, P., et al.: Mask R-CNN. IEEE Trans. Pattern Anal. Mach. Intell. (2017)

    Google Scholar 

  5. Joo, H., Simon, T., Li, X., et al.: Panoptic studio: a massively multiview system for social interaction capture. IEEE Trans. Pattern Anal. Mach. Intell. 99 (2016)

    Google Scholar 

  6. Belagiannis, V., Sikandar, A., et al.: 3D pictorial structures revisited: multiple human pose estimation. IEEE Trans. Pattern Anal. Mach. Intell. 38, 1929–1942 (2016)

    Article  Google Scholar 

  7. Qiu, H., Wang, C., Wang, J., et al.: Cross view fusion for 3D human pose estimation. University of Science and Technology of China; Microsoft Research Asia; TuSimple; Microsoft Research (2019)

    Google Scholar 

  8. Ionescu, C., Papava, D., Olaru, V., et al.: Human3.6M: large scale datasets and predictive methods for 3D human sensing in natural environments. IEEE Trans. Pattern Anal. Mach. Intell. 36(7), 1325–1339 (2014)

    Article  Google Scholar 

  9. Zhang, Z., Wang, C., Qiu, W., et al.: AdaFuse: adaptive multiview fusion for accurate human pose estimation in the wild. arXiv e-prints (2020)

    Google Scholar 

  10. Oberweger, M., Wohlhart, P., Lepetit, V.: DeepPose: human pose estimation via deep neural networks

    Google Scholar 

  11. Newell, A., Yang, K., Deng, J.: Stacked hourglass networks for human pose estimation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 483–499. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_29

    Chapter  Google Scholar 

  12. Huang, S., Gong, M., Tao, D.: A coarse-fine network for keypoint localization. In: 2017 IEEE International Conference on Computer Vision (ICCV). IEEE (2017)

    Google Scholar 

  13. Carreira, J., Agrawal, P., Fragkiadaki, K., et al.: Human pose estimation with iterative error feedback. IEEE (2015)

    Google Scholar 

  14. Ke, L., Chang, M.C., Qi, H., et al.: Multi-scale structure-aware network for human pose estimation (2018)

    Google Scholar 

  15. Fang, H.S., Xie, S., Tai, Y.W., et al.: RMPE: Regional Multi-person Pose Estimation. IEEE (2017)

    Google Scholar 

  16. Chen, Y., Wang, Z., Peng, Y., et al.: Cascaded pyramid network for multi-person pose estimation

    Google Scholar 

  17. Xiao, B., Wu, H., Wei, Y.: Simple baselines for human pose estimation and tracking. arXiv e-prints (2018)

    Google Scholar 

  18. Li, J., Wang, C., Zhu, H., et al.: CrowdPose: efficient crowded scenes pose estimation and a new benchmark (2018)

    Google Scholar 

  19. Pishchulin, L., Insafutdinov, E., Tang, S., et al.: DeepCut: joint subset partition and labeling for multi person pose estimation. IEEE (2016)

    Google Scholar 

  20. Insafutdinov, E., Pishchulin, L., Andres, B., et al.: DeeperCut: a deeper, stronger, and faster multi-person pose estimation model. arXiv e-prints (2016)

    Google Scholar 

  21. Amin S, Andriluka M, Rohrbach M, et al. Multi-view Pictorial Structures for 3D Human Pose Estimation[C]// British Machine Vision Conference 2013. 2013

    Google Scholar 

  22. Wang, C., Wang, Y., Lin, Z., et al.: Robust estimation of 3D human poses from a single image. arXiv e-prints (2014)

    Google Scholar 

  23. Ramakrishna, V., Kanade, T., Sheikh, Y.: Reconstructing 3D human pose from 2D image landmarks. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7575, pp. 573–586. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33765-9_41

    Chapter  Google Scholar 

  24. Iskakov, K., Burkov, E., Lempitsky, V., et al.: Learnable triangulation of human pose. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV). IEEE (2020)

    Google Scholar 

  25. Lin, J., Lee, G.H.: Multi-view multi-person 3D pose estimation with plane sweep stereo (2021)

    Google Scholar 

  26. Chen, C.H., Ramanan, D.: 3D human pose estimation = 2D pose estimation + matching. IEEE (2017)

    Google Scholar 

  27. Pavlakos, G., Zhou, X., Derpanis, K.G., et al.: Coarse-to-fine volumetric prediction for single-image 3D human pose. In: IEEE Conference on Computer Vision & Pattern Recognition. IEEE (2017)

    Google Scholar 

  28. Martinez, J., Hossain, R., Romero, J., et al.: A simple yet effective baseline for 3D human pose estimation. IEEE Computer Society (2017)

    Google Scholar 

  29. Andriluka, M., Pishchulin, L., Gehler, P., et al.: Human pose estimation: new benchmark and state of the art analysis. In: Computer Vision and Pattern Recognition (CVPR). IEEE (2014)

    Google Scholar 

  30. Pavlakos, G., Zhou, X., Derpanis, K.G., et al.: Harvesting multiple views for marker-less 3D human pose annotations. IEEE (2017)

    Google Scholar 

  31. Tome, D., Toso, M., Agapito, L., et al.: Rethinking pose in 3D: multi-stage refinement and recovery for markerless motion capture. IEEE (2018)

    Google Scholar 

  32. Gordon, B., Raab, S., Azov, G., et al.: FLEX: parameter-free multi-view 3D human motion reconstruction (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ge, S., Yu, H., Zhang, Y., Shi, H., Gao, H. (2022). 3D Human Pose Estimation Based on Multi-feature Extraction. In: Fang, L., Povey, D., Zhai, G., Mei, T., Wang, R. (eds) Artificial Intelligence. CICAI 2022. Lecture Notes in Computer Science(), vol 13606. Springer, Cham. https://doi.org/10.1007/978-3-031-20503-3_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20503-3_51

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20502-6

  • Online ISBN: 978-3-031-20503-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics