Abstract
As an important computer vision task, 3D human pose estimation has received widespread attention and many applications have been derived from it. Most previous methods address this task by using a 3D pictorial structure model which is inefficient due to the huge state space. We propose a novel approach to solve this problem. Our key idea is to learn confidence weights of each joint from the input image through a simple neutral network. We also extract the confidence matrix of heatmaps which reflects its feature quality in order to enhance the feature quality in occluded views. Our approach is end-to-end differentiable which can improve the efficiency and robustness. We evaluate the approach on two public datasets including Human3.6M and Occlusion-Person which achieves significant performance gains compare with the state-of-the-art.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bridgeman, L., Volino. M., Guillemaut, J.Y., et al.: Multi-person 3D pose estimation and tracking in sports. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE (2019)
Tu, H., Wang, C., Zeng, W.: VoxelPose: towards multi-camera 3D human pose estimation in wild environment. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 197–212. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_12
Zhe, C., Simon, T., Wei, S.E., et al.: Realtime multi-person 2D pose estimation using part affinity fields. IEEE (2017)
He, K., Gkioxari, G., Dollár, P., et al.: Mask R-CNN. IEEE Trans. Pattern Anal. Mach. Intell. (2017)
Joo, H., Simon, T., Li, X., et al.: Panoptic studio: a massively multiview system for social interaction capture. IEEE Trans. Pattern Anal. Mach. Intell. 99 (2016)
Belagiannis, V., Sikandar, A., et al.: 3D pictorial structures revisited: multiple human pose estimation. IEEE Trans. Pattern Anal. Mach. Intell. 38, 1929–1942 (2016)
Qiu, H., Wang, C., Wang, J., et al.: Cross view fusion for 3D human pose estimation. University of Science and Technology of China; Microsoft Research Asia; TuSimple; Microsoft Research (2019)
Ionescu, C., Papava, D., Olaru, V., et al.: Human3.6M: large scale datasets and predictive methods for 3D human sensing in natural environments. IEEE Trans. Pattern Anal. Mach. Intell. 36(7), 1325–1339 (2014)
Zhang, Z., Wang, C., Qiu, W., et al.: AdaFuse: adaptive multiview fusion for accurate human pose estimation in the wild. arXiv e-prints (2020)
Oberweger, M., Wohlhart, P., Lepetit, V.: DeepPose: human pose estimation via deep neural networks
Newell, A., Yang, K., Deng, J.: Stacked hourglass networks for human pose estimation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 483–499. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_29
Huang, S., Gong, M., Tao, D.: A coarse-fine network for keypoint localization. In: 2017 IEEE International Conference on Computer Vision (ICCV). IEEE (2017)
Carreira, J., Agrawal, P., Fragkiadaki, K., et al.: Human pose estimation with iterative error feedback. IEEE (2015)
Ke, L., Chang, M.C., Qi, H., et al.: Multi-scale structure-aware network for human pose estimation (2018)
Fang, H.S., Xie, S., Tai, Y.W., et al.: RMPE: Regional Multi-person Pose Estimation. IEEE (2017)
Chen, Y., Wang, Z., Peng, Y., et al.: Cascaded pyramid network for multi-person pose estimation
Xiao, B., Wu, H., Wei, Y.: Simple baselines for human pose estimation and tracking. arXiv e-prints (2018)
Li, J., Wang, C., Zhu, H., et al.: CrowdPose: efficient crowded scenes pose estimation and a new benchmark (2018)
Pishchulin, L., Insafutdinov, E., Tang, S., et al.: DeepCut: joint subset partition and labeling for multi person pose estimation. IEEE (2016)
Insafutdinov, E., Pishchulin, L., Andres, B., et al.: DeeperCut: a deeper, stronger, and faster multi-person pose estimation model. arXiv e-prints (2016)
Amin S, Andriluka M, Rohrbach M, et al. Multi-view Pictorial Structures for 3D Human Pose Estimation[C]// British Machine Vision Conference 2013. 2013
Wang, C., Wang, Y., Lin, Z., et al.: Robust estimation of 3D human poses from a single image. arXiv e-prints (2014)
Ramakrishna, V., Kanade, T., Sheikh, Y.: Reconstructing 3D human pose from 2D image landmarks. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7575, pp. 573–586. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33765-9_41
Iskakov, K., Burkov, E., Lempitsky, V., et al.: Learnable triangulation of human pose. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV). IEEE (2020)
Lin, J., Lee, G.H.: Multi-view multi-person 3D pose estimation with plane sweep stereo (2021)
Chen, C.H., Ramanan, D.: 3D human pose estimation = 2D pose estimation + matching. IEEE (2017)
Pavlakos, G., Zhou, X., Derpanis, K.G., et al.: Coarse-to-fine volumetric prediction for single-image 3D human pose. In: IEEE Conference on Computer Vision & Pattern Recognition. IEEE (2017)
Martinez, J., Hossain, R., Romero, J., et al.: A simple yet effective baseline for 3D human pose estimation. IEEE Computer Society (2017)
Andriluka, M., Pishchulin, L., Gehler, P., et al.: Human pose estimation: new benchmark and state of the art analysis. In: Computer Vision and Pattern Recognition (CVPR). IEEE (2014)
Pavlakos, G., Zhou, X., Derpanis, K.G., et al.: Harvesting multiple views for marker-less 3D human pose annotations. IEEE (2017)
Tome, D., Toso, M., Agapito, L., et al.: Rethinking pose in 3D: multi-stage refinement and recovery for markerless motion capture. IEEE (2018)
Gordon, B., Raab, S., Azov, G., et al.: FLEX: parameter-free multi-view 3D human motion reconstruction (2021)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Ge, S., Yu, H., Zhang, Y., Shi, H., Gao, H. (2022). 3D Human Pose Estimation Based on Multi-feature Extraction. In: Fang, L., Povey, D., Zhai, G., Mei, T., Wang, R. (eds) Artificial Intelligence. CICAI 2022. Lecture Notes in Computer Science(), vol 13606. Springer, Cham. https://doi.org/10.1007/978-3-031-20503-3_51
Download citation
DOI: https://doi.org/10.1007/978-3-031-20503-3_51
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20502-6
Online ISBN: 978-3-031-20503-3
eBook Packages: Computer ScienceComputer Science (R0)