Abstract
Twin support vector machine (TSVM) is a successful improvement for traditional support vector machine (SVM) for binary classification. However, it is still a shallow model and has many limitations on prediction performance and computational efficiency. In this paper, we propose deep twin support vector networks (DTSVN) which could enhance its performances in all aspects. Specifically, we put forward two version of DTSVN, for binary classification and multi classification, respectively. DTSVN improves the abilities of feature extraction and classification performance with neural networks instead of a manually selected kernel function. Besides, in order to break the bottleneck that the original model cannot directly handle multi classification tasks, multiclass deep twin support vector networks (MDTSVN) is further raised, which could avoid the inefficient one-vs-rest or one-vs-one strategy. In the numerical experiments, our proposed DTSVN and MDTSVN are compared with the other four methods on MNIST, FASHION MNIST and CIFAR10 datasets. The results demonstrate that our DTSVN achieves the best prediction accuracy for the binary problem, and our MDTSVN significantly outperforms other existing shallow and deep methods for the multi classification problem.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Chopra, S., Hadsell, R., LeCun, Y.: Learning a similarity metric discriminatively, with application to face verification. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 1, pp. 539–546. IEEE (2005)
Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)
Diaz-Vico, D., Prada, J., Omari, A., Dorronsoro, J.: Deep support vector neural networks. Integrated Computer-Aided Engineering (Preprint), pp. 1–14 (2020)
Díaz-Vico, D., Prada, J., Omari, A., Dorronsoro, J.R.: Deep support vector classification and regression. In: Ferrández Vicente, J., Álvarez-Sánchez, J., de la Paz López, F., Toledo Moreo, J., Adeli, H. (eds.) IWINAC 2019. LNCS, vol. 11487, pp. 33–43. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19651-6_4
Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., Hutter, F.: Efficient and robust automated machine learning. Adv. Neural Inform. Process. Syst. 28 (2015)
Ghafoori, Z., Leckie, C.: Deep multi-sphere support vector data description. In: Proceedings of the 2020 SIAM International Conference on Data Mining, pp. 109–117. SIAM (2020). https://doi.org/10.1137/1.9781611976236.13
Gönen, M., Alpaydın, E.: Multiple kernel learning algorithms. J. Mach. Learn. Res. 12, 2211–2268 (2011)
Goodfellow, I., et al.: Generative adversarial nets. Adv. Neural Inform. Process. Syst. 27 (2014)
Hao, P.Y.: New support vector algorithms with parametric insensitive/margin model. Neural Networks 23(1), 60–73 (2010). https://doi.org/10.1016/j.neunet.2009.08.001
Hastie, T., Tibshirani, R.: Classification by pairwise coupling. Adv. Neural Inform. Process. Syst. 10 (1997)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Hearst, M.A., Dumais, S.T., Osuna, E., Platt, J., Scholkopf, B.: Support vector machines. IEEE Intell. Syst. Appl. 13(4), 18–28 (1998). https://doi.org/10.1109/5254.708428
Hsu, C.W., Lin, C.J.: A comparison of methods for multiclass support vector machines. IEEE Trans. Neural Networks 13(2), 415–425 (2002). https://doi.org/10.1109/72.991427
Hussain, M., Wajid, S.K., Elzaart, A., Berbar, M.: A comparison of SVM kernel functions for breast cancer detection. In: 2011 Eighth International Conference Computer Graphics, Imaging and Visualization, pp. 145–150. IEEE (2011). (10/fc9b7v)
Khemchandani, R., Chandra, S.: Twin support vector machines for pattern classification. IEEE Trans. Pattern Anal. Mach. Intell. 29(5), 905–910 (2007). (10/bkq688)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Adv. Neural Inform. Process. Syst. 25 (2012)
LeCun, Y.: The MNIST database of handwritten digits (1998).http://yann.lecun.com/exdb/mnist/
Li, D., Tian, Y., Xu, H.: Deep twin support vector machine. In: 2014 IEEE International Conference on Data Mining Workshop, pp. 65–73. IEEE (2014). (10/gpfwfh)
Li, Y., Zhang, T.: Deep neural mapping support vector machines. Neural Networks 93, 185–194 (2017). (10/gbspkm)
Liu, W., Wen, Y., Yu, Z., Yang, M.: Large-margin softmax loss for convolutional neural networks. In: ICML, vol. 2, p. 7 (2016)
Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. Adv. Neural Inform. Process. Syst. 32 (2019)
Ruff, L., et al.: Deep one-class classification. In: International Conference on Machine Learning, pp. 4393–4402. PMLR (2018)
Schölkopf, B., Smola, A.J., Williamson, R.C., Bartlett, P.L.: New support vector algorithms. Neural Comput. 12(5), 1207–1245 (2000). https://doi.org/10.1162/089976600300015565
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
Tang, Y.: Deep learning using support vector machines. CoRR, abs/1306.0239 2, 1 (2013)
Tax, D.M., Duin, R.P.: Support vector data description. Mach. Learn. 54(1), 45–66 (2004). https://doi.org/10.1023/B:MACH.0000008084.60811.49
Wiering, M., Schomaker, L.R.: Multi-Layer Support Vector Machines. Chapman & Hall/CRC Press (2014)
Xiao, H., Rasul, K., Vollgraf, R.: Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747 (2017)
Zareapoor, M., Shamsolmoali, P., Jain, D.K., Wang, H., Yang, J.: Kernelized support vector machine with deep learning: an efficient approach for extreme multiclass dataset. Pattern Recogn. Lett. 115, 4–13 (2018). https://doi.org/10.1016/j.patrec.2017.09.018
Zhang, S.X., Liu, C., Yao, K., Gong, Y.: Deep neural support vector machines for speech recognition. In: 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4275–4279. IEEE (2015). https://doi.org/10.1109/ICASSP.2015.7178777
Zou, Y., et al.: MK-FSVM-SVDD: a multiple kernel-based fuzzy SVM model for predicting DNA-binding proteins via support vector data description. Current Bioinform 16(2), 274–283 (2021). https://doi.org/10.2174/1574893615999200607173829
Acknowledgments
This work was supported in part by Graduate innovation fund project of Yunnan university of finance and economics (No. 2021YUFEYC081), Scientific research fund project of Yunnan provincial department of education (No. 2022Y546), Scientific research fund project of Yunnan provincial department of science and technology (No. 202001AU070064) and National Natural Science Foundation of China (No. 62006206).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Li, M., Yang, Z. (2022). Deep Twin Support Vector Networks. In: Fang, L., Povey, D., Zhai, G., Mei, T., Wang, R. (eds) Artificial Intelligence. CICAI 2022. Lecture Notes in Computer Science(), vol 13606. Springer, Cham. https://doi.org/10.1007/978-3-031-20503-3_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-20503-3_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20502-6
Online ISBN: 978-3-031-20503-3
eBook Packages: Computer ScienceComputer Science (R0)