Skip to main content

Deep Learning in Autoencoder Framework and Shape Prior for Hand Gesture Recognition

  • Chapter
  • First Online:
Smart Computer Vision

Abstract

Gesture is a form of nonverbal communication and is widely used in everyday life. Gesture recognition system facilitates human computer interaction thus creating an interface, which helps computer to understand human body language. In this article, an automated hand gesture recognition system is proposed using deep learning framework. The proposed scheme classifies the input hand gestures, each represented by a set of feature vector into some predefined number of gesture classes. The deep learning algorithm is used here to recognize hand gestures. The proposed scheme consists of mainly three stages: preprocessing, feature extraction, and classification. The images of hand gestures are stored in a database and are preprocessed to get into suitable form for further processing. The histogram-oriented gradient (HOG) feature vectors are then extracted from the preprocessed gesture images. The feature vectors are trained using deep learning techniques based on which the hand gesture from test set is classified into different classes. The proposed scheme is tested on three different hand gesture databases. The results obtained by the proposed scheme are compared with different state-of-the-art techniques and are found to be better as compared to the four existing state-of-the-art techniques. The performance of the proposed scheme is validated by using different percentage of the training samples with k-fold cross validation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pavlovic, V., Sharma, R., & Huang, T. (1997). Visual interpretation of hand gestures for human-computer interaction: A review. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(7), 677–695.

    Article  Google Scholar 

  2. Stenger, B., Thayananthan, A., Torr, P., & Cipolla, R. (2006). Model-based hand tracking using a hierarchical Bayesian filter. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(9), 1372–1384.

    Article  MATH  Google Scholar 

  3. Krueger, M. (1991). Artificial reality. Addison-Wesley Professional.

    Google Scholar 

  4. Oka, K., Sato, Y., & Koike, H. (2002). Real-time fingertip tracking and gesture recognition. University of Tokyo, Report.

    Google Scholar 

  5. Mitra, S., & Acharya, T. (2007). Gesture recognition: A survey. IEEE Transactions on Systems, Man, and Cybernetics—Part C: Applications and Reviews, 37(3), 311.

    Article  Google Scholar 

  6. Freeman, W. T., & Roth, M. (1995). Orientation histograms for hand gesture recognition. In IEEE International Workshop on Automatic Face and Gesture Recognition.

    Google Scholar 

  7. McConnell, R. K. (1986). Method of and apparatus for pattern recognition. U. S. Patent No. 4,567,610.

    Google Scholar 

  8. Stergiopoulou, E., & Papamarkos, N. (2009). Hand gesture recognition using a neural network shape fitting technique. Engineering Applications of Artificial Intelligence, 22(8), 1141–1158.

    Article  Google Scholar 

  9. Atsalakis, A., Papamarkos, N., & Andreadis, I. (2005). Image dominant colors estimation and color reduction via a new self-growing and self-organized neural network. In Proceedings of the 10th Iberoamerican Congress conference on Progress in Pattern Recognition, Image Analysis and Applications

    Google Scholar 

  10. Chen, F. S., Fu, C. M., & Huang, C. L. (2003). Hand gesture recognition using a real-time tracking method and hidden Markov models. Image Vision Computing, 21(8), 745–758.

    Article  Google Scholar 

  11. Symeonidis, K. (2000, August 23). Hand gesture recognition using neural networks. School of Electronic and Electrical Engineering, Report.

    Google Scholar 

  12. Malik, S. (2003, December 18). Real-time hand tracking and finger tracking for interaction. CSC2503F Project Report.

    Google Scholar 

  13. Hasan, M. M. (2010). HSV brightness factor matching for gesture recognition system. International Journal of Image Processing (IJIP), 4(5), 456–467.

    Google Scholar 

  14. Tang, A., Lu, K., Wang, Y., Huang, J., & Li, H. (2013). A real-time hand posture recognition system using deep neural networks. ACM Transactions on Intelligent Systems and Technology, 9(4), 1–23.

    Article  Google Scholar 

  15. Birk, H., Moeslund, T. B., & Madsen, C. B. (1997). Real-time recognition of hand alphabet gestures using principal component. In 10th Scandinavian Conference on Image Analysis (pp. 261–268).

    Google Scholar 

  16. Kawulok, M. (2013). Fast propagation-based skin regions segmentation in color images. In 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG), Shanghai (pp. 1–7).

    Google Scholar 

  17. Kawulok, M., Kawulok, J., & Nalepa, J. (2014). Spatial-based skin detection using discriminative skin-presence features. Pattern Recognition Letters, 41, 3–13.

    Article  Google Scholar 

  18. Yao, Y., & Fu, Y. (2014). Contour model-based hand-gesture recognition using the kinect sensor. IEEE Transactions on Circuits and Systems for Video Technology, 24(11), 1935–1944.

    Article  Google Scholar 

  19. Wang, C., Liu, Z., & Chan, S. C. (2015). Superpixel-based hand gesture recognition with kinect depth camera. IEEE Transactions on Multimedia, 17(1), 29–39.

    Article  Google Scholar 

  20. Chen, D., Li, G., Sun, Y., Kong, J., Jiang, G., Tang, H., Ju, Z., Yu, H., & Liu, H. (2017). An interactive image segmentation method in hand gesture recognition. Sensors, 7(2), 253–270.

    Article  Google Scholar 

  21. Kapur, J. N., Sahoo, P. K., & Wong, A. K. C. (1985). A new method for gray-level picture thresholding using the entropy of the histogram. Computer Vision, Graphics, and Image Processing, 29(3), 273–285.

    Article  Google Scholar 

  22. Kato, T., Relator, R., Ngouv, H., Hirohashi, Y., Takaki, O., Kakimoto, T., & Okada, K. (2011). Segmental HOG: New descriptor for glomerulus detection in kidney microscopy image. BMC Bioinformatics, 16(1), 1–16.

    Google Scholar 

  23. Wang, B., Liang, W., Wang, Y., & Liang, Y. (2013). Head pose estimation with combined 2D SIFT and 3D HOG features. In Seventh International Conference on Image and Graphics, Qingdao (pp. 650–655).

    Google Scholar 

  24. Jung, H., Tan, J. K., Ishikawa, S., & Morie, T. (2011). Applying HOG feature to the detection and tracking of a human on a bicycle. In 11th International Conference on Control, Automation and Systems, Gyeonggi-do (pp. 1740–1743).

    Google Scholar 

  25. Subudhi, B. N., Veerakumar, T., Yadav, D., Suryavanshi, A. P., & Disha, S. N. (2017). Video skimming for lecture video sequences using histogram based low level features. In IEEE 7th International Advance Computing Conference (pp. 684–689).

    Google Scholar 

  26. Ahmed, T. (2012). A neural network based real time hand gesture recognition system. International Journal of Computer Applications, 59(4), 17.

    Article  Google Scholar 

  27. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., & Manzagol, P. (2010). Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. The Journal of Machine Learning Research, 11, 3371–3408.

    MathSciNet  MATH  Google Scholar 

  28. Xue, G., Liu, S., & Ma, Y. (2020). A hybrid deep learning-based fruit classification using attention model and convolution autoencoder. Complex Intelligent Systems.

    Google Scholar 

  29. Database for hand gesture recognition [Online]. Available: http://sun.aei.polsl.pl/~mkawulok/gestures/. Accessed April 24, 2020.

  30. Moeslund Gesture [Online]. Available: http://www-prima.inrialpes.fr/FGnet/data/12-MoeslundGesture/database.html. Accessed June 16, 2020.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Veerakumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Subudhi, B.N., Veerakumar, T., Harathas, S.R., Prabhudesai, R., Kuppili, V., Jakhetiya, V. (2023). Deep Learning in Autoencoder Framework and Shape Prior for Hand Gesture Recognition. In: Kumar, B.V., Sivakumar, P., Surendiran, B., Ding, J. (eds) Smart Computer Vision. EAI/Springer Innovations in Communication and Computing. Springer, Cham. https://doi.org/10.1007/978-3-031-20541-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20541-5_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20540-8

  • Online ISBN: 978-3-031-20541-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics