Skip to main content

An Effective Diabetic Retinopathy Detection Using Hybrid Convolutional Neural Network Models

  • Chapter
  • First Online:
Smart Computer Vision

Abstract

Loss of vision in the present era of the developing world is mainly caused by diabetic retinopathy. More than 103 million people are believed to be affected. It is estimated that around 40 million beings have diabetes in the United States, and according to the World Health Organization (WHO), 347 million people are living with the disease globally. Diabetic retinopathy (DR) is a long-term diabetes-related eye condition. Roughly, 45–50% of the American citizens suffering from diabetes undergo some unique stages that can be categorized. When DR is diagnosed on a timely basis, the possibility of it extending to the course of vision impairment can be delayed and stopped, though this is not entirely true and a very daunting task because it seldom reveals any symptom before it escalates to a stage of no return to effectively treat it. The paper uses convolutional neural network models to achieve an effective classification for diabetic detection of retinal fundus images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bhatia, K., Arora, S., & Tomar, R. (2016). Diagnosis of diabetic retinopathy using machine learning classification algorithm. In 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (pp. 347–351). https://doi.org/10.1109/NGCT.2016.7877439

  2. Boral, Y. S., & Thorat, S. S. (2021). Classification of diabetic retinopathy based on hybrid neural network. In 2021 5th International Conference on Computing Methodologies and Communication (ICCMC) (pp. 1354–1358). https://doi.org/10.1109/ICCMC51019.2021.9418224

  3. Carrera, E. V., González, A., & Carrera, R. (2017). Automated detection of diabetic retinopathy using SVM. In 2017 IEEE XXIV International Conference on Electronics, Electrical Engineering and Computing (INTERCON) (pp. 1–4). https://doi.org/10.1109/INTERCON.2017.8079692

  4. Cuadros, J., Bresnick, G. (2009). EyePACS: an adaptable telemedicine system for diabetic retinopathy screening. Journal of Diabetes Science and Technology, 3, 509–516.

    Article  Google Scholar 

  5. Harun, N. H., Yusof, Y., Hassan, F., & Embong, Z. (2019). Classification of fundus images for diabetic retinopathy using artificial neural network. In 2019 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT) (pp. 498–501). https://doi.org/10.1109/JEEIT.2019.8717479

  6. Herliana, A., Arifin, T., Susanti, S., & Hikmah, A. B. (2018). Feature selection of diabetic retinopathy disease using particle swarm optimization and neural network. In: 2018 6th International Conference on Cyber and IT Service Management (CITSM) (pp. 1–4). https://doi.org/10.1109/CITSM.2018.8674295

  7. Hsu, C.-W., & Lin, C.-J. (2002). A comparison of methods for multiclass support vector machines. IEEE Transactions on Neural Networks, 13(2), 415–425. https://doi.org/10.1109/72.991427

    Article  Google Scholar 

  8. Jayakumari, C., Lavanya, V., & Sumesh, E. P. (2020). Automated diabetic retinopathy detection and classification using ImageNet convolution neural network using fundus images. In: 2020 International Conference on Smart Electronics and Communication (ICOSEC) (pp. 577–582). https://doi.org/10.1109/ICOSEC49089.2020.9215270

  9. Jiang, H., Xu, J., Shi, R., Yang, K., Zhang, D., Gao, M., Ma, H., & Qian, W. (2020). A multi-label deep learning model with interpretable Grad-CAM for diabetic retinopathy classification. In: 2020 42nd Annual International Conference of the IEEE Engineering in Medicine Biology Society (EMBC) (pp. 1560–1563). https://doi.org/10.1109/EMBC44109.2020.9175884

  10. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep convolutional neural networks. In: Proceedings of the 25th International Conference on Neural Information Processing Systems (Vol. 1, pp. 1097–1105). NIPS’12, Red Hook, NY, USA: Curran Associates.

    Google Scholar 

  11. Kumar, S., & Kumar, B. (2012). Diabetic retinopathy detection by extracting area and number of microaneurysm from colour fundus image. In: 2018 5th International Conference on Signal Processing and Integrated Networks (SPIN) (pp. 359–364). https://doi.org/10.1109/SPIN.2018.8474264

  12. Ramani, R. G., Shanthamalar J., J., & Lakshmi, B. (2017). Automatic diabetic retinopathy detection through ensemble classification techniques automated diabetic retinopathy classification. In: 2017 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC) (pp. 1–4). https://doi.org/10.1109/ICCIC.2017.8524342

  13. Roy, A., Dutta, D., Bhattacharya, P., & Choudhury, S. (2017). Filter and fuzzy C means based feature extraction and classification of diabetic retinopathy using support vector machines. In: 2017 International Conference on Communication and Signal Processing (ICCSP) (pp. 1844–1848). https://doi.org/10.1109/ICCSP.2017.8286715

  14. Roychowdhury, S., Koozekanani, D. D., & Parhi, K. K. (2016). Automated detection of neovascularization for proliferative diabetic retinopathy screening. In: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 1300–1303). https://doi.org/10.1109/EMBC.2016.7590945

  15. Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-scale image recognition. CoRR, abs/1409.1556.

    Google Scholar 

  16. Sodhu, P. S., & Khatkar, K. (2014). A hybrid approach for diabetic retinopathy analysis. International Journal of Computer Application and Technology, 1(7), 41–48.

    Google Scholar 

  17. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., & Rabinovich, A. (2015). Going deeper with convolutions. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 1–9). https://doi.org/10.1109/CVPR.2015.7298594

Download references

Acknowledgements

We would like to express our gratitude toward the Information Technology Department of NITK, Surathkal for its kind cooperation and encouragement that helped us in the completion of this project entitled “An Effective Diabetic Retinopathy Detection using Hybrid Convolutional Neural Network Models.” We would like to thank the department for providing the necessary cluster and GPU technology to implement the project in a preferable environment. We are grateful for the guidance and constant supervision as well as for providing necessary information regarding the project and also for its support in completing the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Anand Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, N., Ahmed, R., Venkatesh, B.H., Anand Kumar, M. (2023). An Effective Diabetic Retinopathy Detection Using Hybrid Convolutional Neural Network Models. In: Kumar, B.V., Sivakumar, P., Surendiran, B., Ding, J. (eds) Smart Computer Vision. EAI/Springer Innovations in Communication and Computing. Springer, Cham. https://doi.org/10.1007/978-3-031-20541-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20541-5_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20540-8

  • Online ISBN: 978-3-031-20541-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics