Skip to main content

Swarm-Based Methods Applied to Computer Vision

  • Chapter
  • First Online:
Smart Computer Vision

Abstract

Swarm-based algorithms are nature-inspired methods that have been applied to solve complex problems. They are population-based methods that attempt to imitate the behaviors observed in natural systems that allow said systems to solve problems. These methods consider a set of individuals that can perform very simple operations when operating independently, but can solve complex problems when viewed as a set operating in parallel. Another important feature of these methods is that they do not have a central control, since all the individuals have the same importance in the system and perform the same operations. Multiple swarm-based methods have been developed over the years, and they have been applied to solve a wide variety of problems. Among others, these methods have been successfully used to solve various machine vision tasks. This chapter shows an overview of the main swarm-based solutions proposed to solve problems related to computer vision. The chapter begins by presenting a brief description of the principles behind swarm algorithms, as well as the basic operations of swarm methods that have been applied in computer vision. After this, the particularities of the swarm-based algorithms that make them useful for solving complex problems are discussed. Then, the remainder of the chapter is devoted to showing the applications of these methods to various problems and subproblems related to computer vision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Szeliski, R. (2010). Computer vision: Algorithms and applications, Springer Science & Business Media.

    Google Scholar 

  2. Panigrahi, B. K., Shi, Y., & Lim, M. H. (2011). Handbook of swarm intelligence: Concepts, principles and applications (Vol. 8). Springer Science & Business Media.

    Google Scholar 

  3. Yang, X. S., Cui, Z., Xiao, R., Gandomi, A. H., & Karamanoglu, M. (2013). Swarm intelligence and bio-inspired computation: theory and applications. Newnes.

    Book  Google Scholar 

  4. Abraham, A., Guo, H., & Liu, H. (2006). Swarm intelligence: foundations, perspectives and applications. In Swarm intelligent systems (pp. 3–25). Springer.

    Google Scholar 

  5. Abdulrahman, S. M. (2017). Using swarm intelligence for solving NP-hard problems. Academic Journal of Nawroz University, 6(3), 46–50.

    Article  Google Scholar 

  6. Hassanien, A. E., & Emary, E. (2018). Swarm intelligence: Principles, advances, and applications. CRC Press.

    Book  Google Scholar 

  7. Slowik, A. (2021). Swarm intelligence algorithms: Modifications and applications. CRC Press.

    MATH  Google Scholar 

  8. Karaboga, D., & Basturk, B. (2007). A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm. Journal of Global Optimization, 39(3), 459–471.

    Article  MathSciNet  MATH  Google Scholar 

  9. Dorigo, M., & Stützle, T. (2019). Ant colony optimization: overview and recent advances. In Handbook of metaheuristics (pp. 311–351).

    Google Scholar 

  10. Mirjalili, S. (2015). The ant lion optimizer. Advances in Engineering Software, 83, 80–98.

    Article  Google Scholar 

  11. Yang, X. S. (2010) A new metaheuristic bat-inspired algorithm. In González, J., Pelta, D., Cruz, C., Terrazas, G., & Krasnogor, N. (Eds.), Nature Inspired Cooperative Strategies for Optimization (NICSO 2010) (pp. 65–74). Springer. 10.1007/978-3-642-12538-6_6

    Chapter  Google Scholar 

  12. Passino, K. M. (2002). Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Systems Magazine, 22(3), 52–67.

    Article  MathSciNet  Google Scholar 

  13. Yang, X. S., & Deb, S. (2009). Cuckoo search via Lévy flights. In 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC) (pp. 210–214). IEEE. 10.1109/NABIC.2009.5393690

  14. Chu, S. C., & Tsai, P. W. (2007). Computational intelligence based on the behavior of cats. International Journal of Innovative Computing, Information and Control, 3(1), 163–173.

    Google Scholar 

  15. Askarzadeh, A. (2016). A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm. Computers & Structures, 169, 1–12.

    Article  Google Scholar 

  16. Yang, X. S., Karamanoglu, M., & He, X. (2014). Flower pollination algorithm: a novel approach for multiobjective optimization. Engineering Optimization, 46(9), 1222–1237.

    Article  MathSciNet  Google Scholar 

  17. Yang, X. S., & He, X. (2013). Firefly algorithm: recent advances and applications. International Journal of Swarm Intelligence, 1(1), 36–50.

    Article  Google Scholar 

  18. Li, X. L., Shao, Z. J., & Qian, J. X. (2002). An optimizing method based on autonomous animats: Fish-swarm algorithm. Systems Engineering - Theory and Practice, 22(11), 32–38.

    Google Scholar 

  19. Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in Engineering Software, 69, 46–61.

    Article  Google Scholar 

  20. Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In Proceedings of ICNN’95-International Conference on Neural Networks (Vol. 4, pp. 1942–1948). IEEE. 10.1109/ICNN.1995.488968

  21. Mirjalili, S., & Lewis, A. (2016). The whale optimization algorithm. Advances in Engineering Software, 95, 51–67.

    Article  Google Scholar 

  22. Chen, B., Chen, L., & Chen, Y. (2013) Efficient ant colony optimization for image feature selection. Signal Processing, 93(6), 1566–1576.

    Article  Google Scholar 

  23. Kumar, A., Patidar, V., Khazanchi, D., & Saini, P. (2016). Optimizing feature selection using particle swarm optimization and utilizing ventral sides of leaves for plant leaf classification. Procedia Computer Science, 89, 324–332.

    Article  Google Scholar 

  24. Naeini, A. A., Babadi, M., Mirzadeh, S. M. J., & Amini, S. (2018). Particle swarm optimization for object-based feature selection of VHSR satellite images. IEEE Geoscience and Remote Sensing Letters, 15(3), 379–383.

    Article  Google Scholar 

  25. Andrushia, A. D., & Patricia, A. T. (2020). Artificial bee colony optimization (ABC) for grape leaves disease detection. Evolving Systems, 11(1), 105–117.

    Article  Google Scholar 

  26. Ghamisi, P., Chen, Y., & Zhu, X. X. (2016). A self-improving convolution neural network for the classification of hyperspectral data. IEEE Geoscience and Remote Sensing Letters, 13(10), 1537–1541.

    Article  Google Scholar 

  27. Su, H., Du, Q., Chen, G., & Du, P. (2014). Optimized hyperspectral band selection using particle swarm optimization. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(6), 2659–2670.

    Article  Google Scholar 

  28. Ghamisi, P., & Benediktsson, J. A. (2014). Feature selection based on hybridization of genetic algorithm and particle swarm optimization. IEEE Geoscience and Remote Sensing Letters, 12(2), 309–313.

    Article  Google Scholar 

  29. Medjahed, S. A., Saadi, T. A., Benyettou, A., & Ouali, M. (2016). Gray wolf optimizer for hyperspectral band selection. Applied Soft Computing, 40, 178–186.

    Article  Google Scholar 

  30. Wang, M., Wu, C., Wang, L., Xiang, D., & Huang, X. (2019). A feature selection approach for hyperspectral image based on modified ant lion optimizer. Knowledge-Based Systems, 168, 39–48.

    Article  Google Scholar 

  31. Medjahed, S. A., Saadi, T. A., Benyettou, A., & Ouali, M. (2015). Binary cuckoo search algorithm for band selection in hyperspectral image classification. IAENG International Journal of Computer Science, 42(3), 183–191.

    Google Scholar 

  32. Xie, F., Li, F., Lei, C., Yang, J., & Zhang, Y. (2019). Unsupervised band selection based on artificial bee colony algorithm for hyperspectral image classification. Applied Soft Computing, 75, 428–440.

    Article  Google Scholar 

  33. Su, H., Cai, Y., & Du, Q. (2016). Firefly-algorithm-inspired framework with band selection and extreme learning machine for hyperspectral image classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(1), 309–320.

    Article  Google Scholar 

  34. Mohammadi, F. G., & Abadeh, M. S. (2014). Image steganalysis using a bee colony based feature selection algorithm. Engineering Applications of Artificial Intelligence, 31, 35–43.

    Article  Google Scholar 

  35. Chhikara, R. R., Sharma, P., & Singh, L. (2016). A hybrid feature selection approach based on improved PSO and filter approaches for image steganalysis. International Journal of Machine Learning and Cybernetics, 7(6), 1195–1206.

    Article  Google Scholar 

  36. Adeli, A., & Broumandnia, A. (2018). Image steganalysis using improved particle swarm optimization based feature selection. Applied Intelligence, 48(6), 1609–1622.

    Article  Google Scholar 

  37. Pathak, Y., Arya, K., & Tiwari, S. (2019). Feature selection for image steganalysis using Levy flight-based grey wolf optimization. Multimedia Tools and Applications, 78(2), 1473–1494.

    Article  Google Scholar 

  38. Zebari, D. A., Zeebaree, D. Q., Saeed, J. N., Zebari, N. A., & Adel, A. Z. (2020). Image steganography based on swarm intelligence algorithms: A survey. Test Engineering and Management, 7(8), 22257–22269.

    Google Scholar 

  39. Nezamabadi-Pour, H., Saryazdi, S., & Rashedi, E. (2006). Edge detection using ant algorithms. Soft Computing, 10(7), 623–628.

    Article  Google Scholar 

  40. Tian, J., Yu, W., & Xie, S. (2008). An ant colony optimization algorithm for image edge detection. In 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence) (pp. 751–756). IEEE. 10.1109/CEC.2008.4630880

  41. Baterina, A. V., & Oppus, C. (2010). Image edge detection using ant colony optimization. WSEAS Transactions on Signal Processing, 6(2), 58–67.

    Google Scholar 

  42. Lu, D. S., & Chen, C. C. (2008). Edge detection improvement by ant colony optimization. Pattern Recognition Letters, 29(4), 416–425.

    Article  Google Scholar 

  43. Verma, O. P., Hanmandlu, M., & Sultania, A. K. (2010). A novel fuzzy ant system for edge detection. In 2010 IEEE/ACIS 9th International Conference on Computer and Information Science (pp. 228–233). IEEE. 10.1109/ICIS.2010.145

  44. Etemad, S. A., & White, T. (2011). An ant-inspired algorithm for detection of image edge features. Applied Soft Computing, 11(8), 4883–4893.

    Article  Google Scholar 

  45. Setayesh, M., Zhang, M., & Johnston, M. (2009). A new homogeneity-based approach to edge detection using PSO. In 2009 24th International Conference Image and Vision Computing New Zealand (pp. 231–236). IEEE. 10.1109/IVCNZ.2009.5378404

  46. Yigitbasi, E. D., & Baykan, N. A. (2013). Edge detection using artificial bee colony algorithm (ABC). International Journal of Information and Electronics Engineering, 3(6), 634–638.

    Google Scholar 

  47. Dong, N., Wu, C. H., Ip, W. H., Chen, Z. Q., Chan, C. Y., & Yung, K. L. (2012). An opposition-based chaotic GA/PSO hybrid algorithm and its application in circle detection. Computers & Mathematics with Applications, 64(6), 1886–1902.

    Article  MathSciNet  MATH  Google Scholar 

  48. Cuevas, E., Sención-Echauri, F., Zaldivar, D., & Pérez-Cisneros, M. (2012) Multi-circle detection on images using artificial bee colony (ABC) optimization. Soft Computing, 16(2), 281–296.

    Article  Google Scholar 

  49. Dasgupta, S., Das, S., Biswas, A., & Abraham, A. (2010). Automatic circle detection on digital images with an adaptive bacterial foraging algorithm. Soft Computing, 14(11), 1151–1164.

    Article  Google Scholar 

  50. Li, H., He, H., & Wen, Y. (2015). Dynamic particle swarm optimization and k-means clustering algorithm for image segmentation. Optik, 126(24), 4817–4822.

    Article  Google Scholar 

  51. Omran, M.G., Salman, A., & Engelbrecht, A. P. (2006). Dynamic clustering using particle swarm optimization with application in image segmentation. Pattern Analysis and Applications, 8(4), 332–344.

    Article  MathSciNet  Google Scholar 

  52. Chu, X., Zhu, Y., Shi, J., & Song, J. (2010). Method of image segmentation based on fuzzy c-means clustering algorithm and artificial fish swarm algorithm. In 2010 International Conference on Intelligent Computing and Integrated Systems (pp. 254–257). IEEE.

    Google Scholar 

  53. Malisia, A. R., & Tizhoosh, H. R. (2006). Image thresholding using ant colony optimization. In The 3rd Canadian Conference on Computer and Robot Vision (CRV’06) (pp. 26–26). IEEE. 10.1109/CRV.2006.42

  54. Han, Y., & Shi, P. (2007). An improved ant colony algorithm for fuzzy clustering in image segmentation. Neurocomputing, 70(4–6), 665–671.

    Article  Google Scholar 

  55. Yang, X., Zhao, W., Chen, Y., & Fang, X. (2008). Image segmentation with a fuzzy clustering algorithm based on ant-tree. Signal Processing, 88(10), 2453–2462.

    Article  MATH  Google Scholar 

  56. Ye, Z., Hu, Z., Wang, H., & Chen, H. (2011). Automatic threshold selection based on artificial bee colony algorithm. In 2011 3rd International Workshop on Intelligent Systems and Applications (pp. 1–4). IEEE. 10.1109/ISA.2011.5873357

  57. Horng, M. H. (2010). A multilevel image thresholding using the honey bee mating optimization. Applied Mathematics and Computation, 215(9), 3302–3310.

    Article  MathSciNet  MATH  Google Scholar 

  58. Zhang, Y., & Wu, L. (2011). Optimal multi-level thresholding based on maximum Tsallis entropy via an artificial bee colony approach. Entropy, 13(4), 841–859.

    Article  MathSciNet  MATH  Google Scholar 

  59. Akay, B. (2013). A study on particle swarm optimization and artificial bee colony algorithms for multilevel thresholding. Applied Soft Computing, 13(6), 3066–3091.

    Article  Google Scholar 

  60. Bhandari, A. K., Kumar, A., & Singh, G. K. (2015). Modified artificial bee colony based computationally efficient multilevel thresholding for satellite image segmentation using Kapur’s, Otsu and Tsallis functions. Expert Systems with Applications, 42(3), 1573–1601.

    Article  Google Scholar 

  61. Sri Madhava Raja, N., Rajinikanth, V., & Latha, K. (2014). Otsu based optimal multilevel image thresholding using firefly algorithm. Modelling and Simulation in Engineering, 2014. 10.1155/2014/794574

  62. Brajevic, I., & Tuba, M. (2014). Cuckoo search and firefly algorithm applied to multilevel image thresholding. In Yang, X. (Ed.), Cuckoo search and firefly algorithm. Studies in Computational Intelligence (pp. 115–139). Springer.

    Google Scholar 

  63. Manic, K. S., Priya, R. K., & Rajinikanth, V. (2016). Image multithresholding based on Kapur/Tsallis entropy and firefly algorithm. Indian Journal of Science and Technology, 9(12), 1–6. 10.17485/ijst/2016/v9i12/89949

  64. He, L., & Huang, S. (2017). Modified firefly algorithm based multilevel thresholding for color image segmentation. Neurocomputing, 240, 152–174.

    Article  Google Scholar 

  65. Pare, S., Bhandari, A. K., Kumar, A., & Singh, G. K. (2018). A new technique for multilevel color image thresholding based on modified fuzzy entropy and Lévy flight firefly algorithm. Computers & Electrical Engineering, 70, 476–495.

    Article  Google Scholar 

  66. Horng, M. H., & Liou, R. J. (2011). Multilevel minimum cross entropy threshold selection based on the firefly algorithm. Expert Systems with Applications, 38(12), 14805–14811.

    Article  Google Scholar 

  67. Bhandari, A. K., Singh, V. K., Kumar, A., & Singh, G. K. (2014). Cuckoo search algorithm and wind driven optimization based study of satellite image segmentation for multilevel thresholding using Kapur’s entropy. Expert Systems with Applications, 41(7), 3538–3560.

    Article  Google Scholar 

  68. Agrawal, S., Panda, R., Bhuyan, S., & Panigrahi, B. K. (2013). Tsallis entropy based optimal multilevel thresholding using cuckoo search algorithm. Swarm and Evolutionary Computation, 11, 16–30.

    Article  Google Scholar 

  69. Pare, S., Kumar, A., Bajaj, V., & Singh, G. K. (2017). An efficient method for multilevel color image thresholding using cuckoo search algorithm based on minimum cross entropy. Applied Soft Computing, 61, 570–592.

    Article  Google Scholar 

  70. Suresh, S., & Lal, S. (2016). An efficient cuckoo search algorithm based multilevel thresholding for segmentation of satellite images using different objective functions. Expert Systems with Applications, 58, 184–209.

    Article  Google Scholar 

  71. Gao, H., Xu, W., Sun, J., & Tang, Y. (2009). Multilevel thresholding for image segmentation through an improved quantum-behaved particle swarm algorithm. IEEE Transactions on Instrumentation and Measurement, 59(4), 934–946.

    Article  Google Scholar 

  72. Liu, Y., Mu, C., Kou, W., & Liu, J. (2015). Modified particle swarm optimization-based multilevel thresholding for image segmentation. Soft Computing, 19(5), 1311–1327.

    Article  Google Scholar 

  73. Ghamisi, P., Couceiro, M. S., Martins, F. M., & Benediktsson, J. A. (2013). Multilevel image segmentation based on fractional-order Darwinian particle swarm optimization. IEEE Transactions on Geoscience and Remote Sensing, 52(5), 2382–2394.

    Article  Google Scholar 

  74. Maitra, M., & Chatterjee, A. (2008). A hybrid cooperative–comprehensive learning based PSO algorithm for image segmentation using multilevel thresholding. Expert Systems with Applications, 34(2), 1341–1350.

    Article  Google Scholar 

  75. Duraisamy, S. P., & Kayalvizhi, R. (2010). A new multilevel thresholding method using swarm intelligence algorithm for image segmentation. Journal of Intelligent Learning Systems and Applications, 2(03), 126–138.

    Article  Google Scholar 

  76. Yin, P. Y. (2007). Multilevel minimum cross entropy threshold selection based on particle swarm optimization. Applied Mathematics and Computation, 184(2), 503–513.

    Article  MathSciNet  MATH  Google Scholar 

  77. Li, L., Sun, L., Guo, J., Qi, J., Xu, B., & Li, S. (2017). Modified discrete grey wolf optimizer algorithm for multilevel image thresholding. Computational Intelligence and Neuroscience, 2017. 10.1155/2017/3295769

  78. Khairuzzaman, A. K. M., & Chaudhury, S. (2017). Multilevel thresholding using grey wolf optimizer for image segmentation. Expert Systems with Applications, 86, 64–76.

    Article  Google Scholar 

  79. Satapathy, S. C., Raja, N. S. M., Rajinikanth, V., Ashour, A. S., & Dey, N. (2018). Multi-level image thresholding using Otsu and chaotic bat algorithm. Neural Computing and Applications, 29(12), 1285–1307.

    Article  Google Scholar 

  80. Alihodzic, A., & Tuba, M. (2014). Improved bat algorithm applied to multilevel image thresholding. The Scientific World Journal, 2014. 10.1155/2014/176718

  81. Liang, Y. C., Chen, A. H. L., & Chyu, C. C. (2006). Application of a hybrid ant colony optimization for the multilevel thresholding in image processing. In King, I., Wang, J., Chan, L., & Wang, D. (Eds.), International Conference on Neural Information Processing. Lecture Notes in Computer Science (Vol. 4233, pp. 1183–1192). Springer.

    Google Scholar 

  82. Abd El Aziz, M., Ewees, A. A., Hassanien, A. E., Mudhsh, M., & Xiong, S. (2018). Multi-objective whale optimization algorithm for multilevel thresholding segmentation. In Advances in Soft Computing and Machine Learning in Image Processing (pp. 23–39). Springer.

    Google Scholar 

  83. Upadhyay, P., & Chhabra, J. K. (2020). Kapur’s entropy based optimal multilevel image segmentation using crow search algorithm. Applied Soft Computing, 97. 10.1016/j.asoc.2019.105522

  84. Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9(1), 62–66.

    Article  MathSciNet  Google Scholar 

  85. Kapur, J. N., Sahoo, P. K., & Wong, A. K. (1985). A new method for gray-level picture thresholding using the entropy of the histogram. Computer Vision, Graphics, and Image Processing, 29(3), 273–285.

    Article  Google Scholar 

  86. Tsallis, C. (1988). Possible generalization of Boltzmann-Gibbs statistics. Journal of Statistical Physics, 52(1), 479–487.

    Article  MathSciNet  MATH  Google Scholar 

  87. Li, C. H., & Lee, C. (1993). Minimum cross entropy thresholding. Pattern Recognition, 26(4), 617–625.

    Article  Google Scholar 

  88. Chandramouli, K., & Izquierdo, E. (2006). Image classification using chaotic particle swarm optimization. In 2006 International Conference on Image Processing (pp. 3001–3004). IEEE. 10.1109/ICIP.2006.312968

  89. Wang, B., Sun, Y., Xue, B., & Zhang, M. (2018). Evolving deep convolutional neural networks by variable-length particle swarm optimization for image classification. In 2018 IEEE Congress on Evolutionary Computation (CEC) (pp. 1–8). IEEE. 10.1109/CEC.2018.8477735

  90. Fielding, B., & Zhang, L. (2018). Evolving image classification architectures with enhanced particle swarm optimisation. IEEE Access, 6, 68560–68575.

    Article  Google Scholar 

  91. Junior, F. E. F., & Yen, G. G. (2019). Particle swarm optimization of deep neural networks architectures for image classification. Swarm and Evolutionary Computation, 49, 62–74.

    Article  Google Scholar 

  92. Wang, S., Zhang, Y., Ji, G., Yang, J., Wu, J., & Wei, L. (2015). Fruit classification by wavelet-entropy and feedforward neural network trained by fitness-scaled chaotic ABC and biogeography-based optimization. Entropy, 17(8), 5711–5728.

    Article  Google Scholar 

  93. Yang, J., Ye, Z., Zhang, X., Liu, W., & Jin, H. (2017). Attribute weighted Naive Bayes for remote sensing image classification based on cuckoo search algorithm. In 2017 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC) (pp. 169–174). IEEE. 10.1109/SPAC.2017.8304270

  94. Chouhan, S. S., Kaul, A., Singh, U. P., & Jain, S. (2018). Bacterial foraging optimization based radial basis function neural network (BRBFNN) for identification and classification of plant leaf diseases: An automatic approach towards plant pathology. IEEE Access, 6, 8852–8863.

    Article  Google Scholar 

  95. Omran, M. G., Engelbrecht, A. P., & Salman, A. (2004). Image classification using particle swarm optimization. In K. Tan, M. Lim, X. Yao, & L. Wang (Eds.), Recent Advances in Simulated Evolution and Learning (pp. 347–365). World Scientific. 10.1142/9789812561794_0019

    Chapter  Google Scholar 

  96. Omran, M., Engelbrecht, A. P., & Salman, A. (2005). Particle swarm optimization method for image clustering. International Journal of Pattern Recognition and Artificial Intelligence, 19(03), 297–321.

    Article  Google Scholar 

  97. Liu, X., Li, X., Liu, L., He, J., & Ai, B. (2008). An innovative method to classify remote-sensing images using ant colony optimization. IEEE Transactions on Geoscience and Remote Sensing, 46(12), 4198–4208.

    Article  Google Scholar 

  98. Liu, X., Li, X., Peng, X., Li, H., & He, J. (2008). Swarm intelligence for classification of remote sensing data. Science in China Series D: Earth Sciences, 51(1), 79–87.

    Article  Google Scholar 

  99. Omkar, S., Kumar, M. M., Mudigere, D., & Muley, D. (2007). Urban satellite image classification using biologically inspired techniques. In 2007 IEEE International Symposium on Industrial Electronics (pp. 1767–1772). IEEE. 10.1109/ISIE.2007.4374873

  100. Zhang, Y., & Wu, L. (2011). Crop classification by forward neural network with adaptive chaotic particle swarm optimization. Sensors, 11(5), 4721–4743.

    Article  Google Scholar 

  101. Owechko, Y., & Medasani, S. (2005). Cognitive swarms for rapid detection of objects and associations in visual imagery. In Proceedings of 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005. (pp. 420–423). IEEE.

    Google Scholar 

  102. Singh, N., Arya, R., & Agrawal, R. (2014). A novel approach to combine features for salient object detection using constrained particle swarm optimization. Pattern Recognition, 47(4), 1731–1739.

    Article  Google Scholar 

  103. Ugolotti, R., Nashed, Y. S., Mesejo, P., Ivekovič, Š., Mussi, L., & Cagnoni, S. (2013). Particle swarm optimization and differential evolution for model-based object detection. Applied Soft Computing, 13(6), 3092–3105.

    Article  Google Scholar 

  104. Mussi, L., Cagnoni, S., & Daolio, F. (2009). GPU-based road sign detection using particle swarm optimization. In 2009 Ninth International Conference on Intelligent Systems Design and Applications (pp. 152–157). IEEE.

    Google Scholar 

  105. Maldonado, S., Acevedo, J., Lafuente, S., Fernández, A., & López-Ferreras, F. (2010). An optimization on pictogram identification for the road-sign recognition task using SVMs. Computer Vision and Image Understanding, 114(3), 373–383.

    Article  Google Scholar 

  106. Tseng, C. C., Hsieh, J. G., & Jeng, J. H. (2009). Active contour model via multi-population particle swarm optimization. Expert Systems with Applications, 36(3), 5348–5352.

    Article  Google Scholar 

  107. Horng, M. H., Liou, R. J., & Wu, J. (2010). Parametric active contour model by using the honey bee mating optimization. Expert Systems with Applications, 37(10), 7015–7025.

    Article  Google Scholar 

  108. Maboudi, M., Amini, J., Hahn, M., & Saati, M. (2017). Object-based road extraction from satellite images using ant colony optimization. International Journal of Remote Sensing, 38(1), 179–198.

    Article  Google Scholar 

  109. Iwin, S., Sasikala, J., & Juliet, D. S. (2019). Optimized vessel detection in marine environment using hybrid adaptive cuckoo search algorithm. Computers & Electrical Engineering, 78, 482–492.

    Article  Google Scholar 

  110. Banharnsakun, A., & Tanathong, S. (2014). Object detection based on template matching through use of best-so-far ABC. Computational Intelligence and Neuroscience, 2014. 10.1155/2014/919406

  111. Chidambaram, C., & Lopes, H. S. (2009). A new approach for template matching in digital images using an artificial bee colony algorithm. In 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC) (pp. 146–151). IEEE. 10.1109/NABIC.2009.5393631

  112. Xu, C., & Duan, H. (2010). Artificial bee colony (ABC) optimized edge potential function (EPF) approach to target recognition for low-altitude aircraft. Pattern Recognition Letters, 31(13), 1759–1772.

    Article  Google Scholar 

  113. Zhang, X., Hu, W., Qu, W., & Maybank, S. (2010). Multiple object tracking via species-based particle swarm optimization. IEEE Transactions on Circuits and Systems for Video Technology, 20(11), 1590–1602.

    Article  Google Scholar 

  114. Kobayashi, T., Nakagawa, K., Imae, J., & Zhai, G. (2007). Real time object tracking on video image sequence using particle swarm optimization. In 2007 International Conference on Control, Automation and Systems (pp. 1773–1778). IEEE. 10.1109/ICCAS.2007.4406632

  115. Ramakoti, N., Vinay, A., & Jatoth, R. K. (2009). Particle swarm optimization aided Kalman filter for object tracking. In 2009 International Conference on Advances in Computing, Control, and Telecommunication Technologies (pp. 531–533). IEEE. 10.1109/ACT.2009.135

  116. Walia, G. S., & Kapoor, R. (2014). Intelligent video target tracking using an evolutionary particle filter based upon improved cuckoo search. Expert Systems with Applications, 41(14), 6315–6326.

    Article  Google Scholar 

  117. Ljouad, T., Amine, A., & Rziza, M. (2014). A hybrid mobile object tracker based on the modified cuckoo search algorithm and the Kalman filter. Pattern Recognition, 47(11), 3597–3613.

    Article  Google Scholar 

  118. Gao, M. L., Shen, J., Yin, L. J., Liu, W., Zou, G. F., Li, H. T., & Fu, G. X. (2016). A novel visual tracking method using bat algorithm. Neurocomputing, 177, 612–619.

    Article  Google Scholar 

  119. Gao, M. L., He, X. H., Luo, D. S., Jiang, J., & Teng, Q. Z. (2013). Object tracking using firefly algorithm. IET Computer Vision, 7(4), 227–237. 10.1049/iet-cvi.2012.0207.

  120. Kanan, H. R., & Faez, K. (2008). An improved feature selection method based on ant colony optimization (ACO) evaluated on face recognition system. Applied Mathematics and Computation, 205(2), 716–725.

    Article  MATH  Google Scholar 

  121. Kotia, J., Bharti, R., Kotwal, A., & Mangrulkar, R. (2020). Application of firefly algorithm for face recognition. In Dey, N. (Ed.), Applications of firefly algorithm and its variants (pp. 147–171). Springer.

    Google Scholar 

  122. Ramadan, R. M., & Abdel-Kader, R. F. (2009). Face recognition using particle swarm optimization-based selected features. International Journal of Signal Processing, Image Processing and Pattern Recognition, 2(2), 51–65.

    Google Scholar 

  123. Krisshna, N. A., Deepak, V. K., Manikantan, K., & Ramachandran, S. (2014). Face recognition using transform domain feature extraction and PSO-based feature selection. Applied Soft Computing, 22, 141–161.

    Article  Google Scholar 

  124. Tiwari, V. (2012). Face recognition based on cuckoo search algorithm. Indian Journal of Computer Science and Engineering, 3(3), 401–405.

    Google Scholar 

  125. Jakhar, R., Kaur, N., & Singh, R. (2011). Face recognition using bacteria foraging optimization-based selected features. International Journal of Advanced Computer Science and Applications, 1(3), 106–111.

    Article  Google Scholar 

  126. Kumar, D. (2017). Feature selection for face recognition using DCT-PCA and bat algorithm. International Journal of Information Technology, 9(4), 411–423.

    Article  Google Scholar 

  127. Raghavendra, R., Dorizzi, B., Rao, A., & Kumar, G. H. (2011). Particle swarm optimization based fusion of near infrared and visible images for improved face verification. Pattern Recognition, 44(2), 401–411.

    Article  Google Scholar 

  128. Yadav, D., Vatsa, M., Singh, R., & Tistarelli, M. (2013). Bacteria foraging fusion for face recognition across age progression. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (pp. 173–179). 10.1109/CVPRW.2013.33

  129. Wei, J., Jian-Qi, Z., & Xiang, Z. (2011). Face recognition method based on support vector machine and particle swarm optimization. Expert Systems with Applications, 38(4), 4390–4393.

    Article  Google Scholar 

  130. Panda, R., Naik, M. K., & Panigrahi, B. K. (2011). Face recognition using bacterial foraging strategy. Swarm and Evolutionary Computation, 1(3), 138–146.

    Article  Google Scholar 

  131. Chakrabarty, A., Jain, H., & Chatterjee, A. (2013). Volterra kernel based face recognition using artificial bee colony optimization. Engineering Applications of Artificial Intelligence, 26(3), 1107–1114.

    Article  Google Scholar 

  132. Lu, Y., Zeng, N., Liu, Y., & Zhang, N. (2015). A hybrid wavelet neural network and switching particle swarm optimization algorithm for face direction recognition. Neurocomputing, 155, 219–224.

    Article  Google Scholar 

  133. Naik, M. K., & Panda, R. (2016). A novel adaptive cuckoo search algorithm for intrinsic discriminant analysis based face recognition. Applied Soft Computing, 38, 661–675.

    Article  Google Scholar 

  134. Nebti, S., & Boukerram, A. (2017). Swarm intelligence inspired classifiers for facial recognition. Swarm and Evolutionary Computation, 32, 150–166.

    Article  Google Scholar 

  135. Sánchez, D., Melin, P., & Castillo, O. (2017). Optimization of modular granular neural networks using a firefly algorithm for human recognition. Engineering Applications of Artificial Intelligence, 64, 172–186.

    Article  Google Scholar 

  136. Zhang, L., Mistry, K., Neoh, S. C., & Lim, C. P. (2016). Intelligent facial emotion recognition using moth-firefly optimization. Knowledge-Based Systems, 111, 248–267.

    Article  Google Scholar 

  137. Mistry, K., Zhang, L., Neoh, S. C., Lim, C. P., & Fielding, B. (2016). A micro-GA embedded PSO feature selection approach to intelligent facial emotion recognition. IEEE Transactions on Cybernetics, 47(6), 1496–1509.

    Article  Google Scholar 

  138. Sikkandar, H., & Thiyagarajan, R. (2021). Deep learning based facial expression recognition using improved cat swarm optimization. Journal of Ambient Intelligence and Humanized Computing, 12(2), 3037–3053.

    Article  Google Scholar 

  139. Sreedharan, N. P. N., Ganesan, B., Raveendran, R., Sarala, P., & Dennis, B. (2018). Grey wolf optimisation-based feature selection and classification for facial emotion recognition. IET Biometrics, 7(5), 490–499.

    Article  Google Scholar 

  140. Mpiperis, I., Malassiotis, S., Petridis, V., & Strintzis, M. G. (2008). 3D facial expression recognition using swarm intelligence. In 2008 IEEE International Conference on Acoustics, Speech and Signal Processing (pp. 2133–2136). IEEE. 10.1109/ICASSP.2008.4518064

  141. Padeleris, P., Zabulis, X., & Argyros, A. A. (2012). Head pose estimation on depth data based on particle swarm optimization. In 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (pp. 42–49). IEEE.

    Google Scholar 

  142. Meyer, G. P., Gupta, S., Frosio, I., Reddy, D., & Kautz, J. (2015). Robust model-based 3D head pose estimation. In Proceedings of the IEEE International Conference on Computer Vision (pp. 3649–3657).

    Google Scholar 

  143. Zhang, Y., & Wu, L. (2011). Face pose estimation by chaotic artificial bee colony. International Journal of Digital Content Technology and its Applications, 5(2), 55–63.

    Article  MathSciNet  Google Scholar 

  144. Oikonomidis, I., Kyriazis, N., & Argyros, A. A. (2010). Markerless and efficient 26-DOF hand pose recovery. In Asian Conference on Computer Vision (pp. 744–757). Springer.

    Google Scholar 

  145. Ye, Q., Yuan, S., & Kim, T. K. (2016). Spatial attention deep net with partial PSO for hierarchical hybrid hand pose estimation. In B. Leibe, J. Matas, N. Sebe, & M. Welling (Eds.), European Conference on Computer Vision (pp. 346–361). Springer. 10.1007/978-3-319-46484-8_21

    Chapter  Google Scholar 

  146. Oikonomidis, I., Kyriazis, N., & Argyros, A. A. (2011). Full DOF tracking of a hand interacting with an object by modeling occlusions and physical constraints. In 2011 International Conference on Computer Vision (pp. 2088–2095). IEEE. 10.1109/ICCV.2011.6126483

  147. Oikonomidis, I., Kyriazis, N., & Argyros, A. A. (2011). Efficient model-based 3D tracking of hand articulations using Kinect. In J. Hoey, S. McKenna, & E. Trucco (Eds.), British Machine Vision Conference (Vol. 1, pp. 2088–2095). 10.5244/C.25.101

  148. Ivekovič, Š., Trucco, E., & Petillot, Y. R. (2008). Human body pose estimation with particle swarm optimisation. Evolutionary Computation, 16(4), 509–528.

    Article  Google Scholar 

  149. Akhtar, S., Ahmad, A., & Abdel-Rahman, E. M. (2012). A metaheuristic bat-inspired algorithm for full body human pose estimation. In 2012 Ninth Conference on Computer and Robot Vision (pp. 369–375). IEEE. 10.1109/CRV.2012.55

  150. Robertson, C., & Trucco, E. (2006). Human body posture via hierarchical evolutionary optimization. In British Machine Vision Conference (Vol. 6, pp. 111–118). 10.5244/C.20.102

  151. Balaji, S., Karthikeyan, S., & Manikandan, R. (2021). Object detection using metaheuristic algorithm for volley ball sports application. Journal of Ambient Intelligence and Humanized Computing, 12(1), 375–385.

    Article  Google Scholar 

  152. John, V., Trucco, E., & Ivekovic, S. (2010). Markerless human articulated tracking using hierarchical particle swarm optimisation. Image and Vision Computing, 28(11), 1530–1547.

    Article  Google Scholar 

  153. Zhang, X., Hu, W., Wang, X., Kong, Y., Xie, N., Wang, H., Ling, H., & Maybank, S. (2010). A swarm intelligence based searching strategy for articulated 3D human body tracking. In 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition-Workshops (pp. 45–50). IEEE.

    Google Scholar 

  154. Thida, M., Eng, H. L., Monekosso, D. N., & Remagnino, P. (2013). A particle swarm optimisation algorithm with interactive swarms for tracking multiple targets. Applied Soft Computing, 13(6), 3106–3117.

    Article  Google Scholar 

  155. Hancer, E., Ozturk, C., & Karaboga, D. (2013). Extraction of brain tumors from MRI images with artificial bee colony based segmentation methodology. In 2013 8th International Conference on Electrical and Electronics Engineering (ELECO) (pp. 516–520). IEEE. 0.1109/ELECO.2013.6713896

  156. Taherdangkoo, M., Yazdi, M., & Rezvani, M. (2010). Segmentation of MR brain images using FCM improved by artificial bee colony (ABC) algorithm. In Proceedings of the 10th IEEE International Conference on Information Technology and Applications in Biomedicine (pp. 1–5). IEEE. 10.1109/ITAB.2010.5687803

  157. Menon, N., & Ramakrishnan, R. (2015). Brain tumor segmentation in MRI images using unsupervised artificial bee colony algorithm and FCM clustering. In 2015 International Conference on Communications and Signal Processing (ICCSP) (pp. 6–9). IEEE. 10.1109/ICCSP.2015.7322635

  158. Mostafa, A., Fouad, A., Abd Elfattah, M., Hassanien, A. E., Hefny, H., Zhu, S. Y., & Schaefer, G. (2015). CT liver segmentation using artificial bee colony optimisation. Procedia Computer Science, 60, 1622–1630.

    Article  Google Scholar 

  159. Pereira, C., Gonçalves, L., & Ferreira, M. (2015). Exudate segmentation in fundus images using an ant colony optimization approach. Information Sciences, 296, 14–24.

    Article  MathSciNet  Google Scholar 

  160. Huang, P., Cao, H., & Luo, S. (2008). An artificial ant colonies approach to medical image segmentation. Computer Methods and Programs in Biomedicine, 92(3), 267–273.

    Article  Google Scholar 

  161. Lee, M. E., Kim, S. H., Cho, W. H., Park, S. Y., & Lim, J. S. (2009). Segmentation of brain MR images using an ant colony optimization algorithm. In 2009 Ninth IEEE International Conference on Bioinformatics and Bioengineering (pp. 366–369). IEEE. 10.1109/BIBE.2009.58

  162. Karnan, M., & Logheshwari, T. (2010). Improved implementation of brain MRI image segmentation using ant colony system. In 2010 IEEE International Conference on Computational Intelligence and Computing Research (pp. 1–4) IEEE. 10.1109/ICCIC.2010.5705897

  163. Chakraborty, S., Chatterjee, S., Dey, N., Ashour, A. S., Ashour, A. S., Shi, F., & Mali, K. (2017). Modified cuckoo search algorithm in microscopic image segmentation of hippocampus. Microscopy Research and Technique, 80(10), 1051–1072.

    Article  Google Scholar 

  164. Ilunga-Mbuyamba, E., Cruz-Duarte, J. M., Avina-Cervantes, J. G., Correa-Cely, C. R., Lindner, D., & Chalopin, C. (2016). Active contours driven by cuckoo search strategy for brain tumour images segmentation. Expert Systems with Applications, 56, 59–68.

    Article  Google Scholar 

  165. Li, Y., Jiao, L., Shang, R., & Stolkin, R. (2015). Dynamic-context cooperative quantum-behaved particle swarm optimization based on multilevel thresholding applied to medical image segmentation. Information Sciences, 294, 408–422.

    Article  MathSciNet  Google Scholar 

  166. Mekhmoukh, A., & Mokrani, K. (2015). Improved fuzzy C-means based particle swarm optimization (PSO) initialization and outlier rejection with level set methods for MR brain image segmentation. Computer Methods and Programs in Biomedicine, 122(2), 266–281.

    Article  Google Scholar 

  167. Kavitha, P., & Prabakaran, S. (2019). A novel hybrid segmentation method with particle swarm optimization and fuzzy c-mean based on partitioning the image for detecting lung cancer. International Journal of Engineering and Advanced Technology, 8(5), 1223–1227.

    Google Scholar 

  168. Mandal, D., Chatterjee, A., & Maitra, M. (2014). Robust medical image segmentation using particle swarm optimization aided level set based global fitting energy active contour approach. Engineering Applications of Artificial Intelligence, 35, 199–214.

    Article  Google Scholar 

  169. Wen, L., Wang, X., Wu, Z., Zhou, M., & Jin, J. S. (2015). A novel statistical cerebrovascular segmentation algorithm with particle swarm optimization. Neurocomputing, 148, 569–577.

    Article  Google Scholar 

  170. Parsian, A., Ramezani, M., & Ghadimi, N. (2017). A hybrid neural network-gray wolf optimization algorithm for melanoma detection. Biomedical Research, 28(8), 3408–3411.

    Google Scholar 

  171. Wang, R., Zhou, Y., Zhao, C., & Wu, H. (2015). A hybrid flower pollination algorithm based modified randomized location for multi-threshold medical image segmentation. Bio-medical Materials and Engineering, 26(s1), S1345–S1351. 10.3233/BME-151432

  172. Alagarsamy, S., Kamatchi, K., Govindaraj, V., Zhang, Y. D., & Thiyagarajan, A. (2019). Multi-channeled MR brain image segmentation: A new automated approach combining bat and clustering technique for better identification of heterogeneous tumors. Biocybernetics and Biomedical Engineering, 39(4), 1005–1035.

    Article  Google Scholar 

  173. Rajinikanth, V., Raja, N. S. M., & Kamalanand, K. (2017). Firefly algorithm assisted segmentation of tumor from brain MRI using Tsallis function and Markov random field. Journal of Control Engineering and Applied Informatics, 19(3), 97–106.

    Google Scholar 

  174. Agrawal, V., & Chandra, S. (2015). Feature selection using artificial bee colony algorithm for medical image classification. In 2015 Eighth International Conference on Contemporary Computing (IC3) (pp. 171–176). IEEE. 10.1109/IC3.2015.7346674

  175. Ahmed, H. M., Youssef, B. A., Elkorany, A. S., Saleeb, A. A., & Abd El-Samie, F. (2018). Hybrid gray wolf optimizer–artificial neural network classification approach for magnetic resonance brain images. Applied Optics, 57(7), B25–B31.

    Article  Google Scholar 

  176. Zhang, Y., Wang, S., Ji, G., & Dong, Z. (2013). An MR brain images classifier system via particle swarm optimization and kernel support vector machine. The Scientific World Journal, 2013. 10.1155/2013/130134

  177. Dheeba, J., Singh, N. A., & Selvi, S. T. (2014). Computer-aided detection of breast cancer on mammograms: A swarm intelligence optimized wavelet neural network approach. Journal of Biomedical Informatics, 49, 45–52.

    Article  Google Scholar 

  178. Senapati, M. R., & Dash, P. K. (2013). Local linear wavelet neural network based breast tumor classification using firefly algorithm. Neural Computing and Applications, 22(7), 1591–1598.

    Article  Google Scholar 

  179. Tan, T. Y., Zhang, L., Neoh, S. C., & Lim, C. P. (2018). Intelligent skin cancer detection using enhanced particle swarm optimization. Knowledge-based Systems, 158, 118–135.

    Article  Google Scholar 

  180. Jothi, G., & Hannah Inbarani, H. (2016). Hybrid tolerance rough set–firefly based supervised feature selection for MRI brain tumor image classification. Applied Soft Computing, 46, 639–651.

    Article  Google Scholar 

  181. Santhi, S., & Bhaskaran, V. (2014). Modified artificial bee colony based feature selection: A new method in the application of mammogram image classification. International Journal of Scientific and Technology Research, 3(6), 1664–1667.

    Google Scholar 

  182. Shankar, K., Lakshmanaprabu, S., Khanna, A., Tanwar, S., Rodrigues, J. J., & Roy, N. R. (2019). Alzheimer detection using group grey wolf optimization based features with convolutional classifier. Computers & Electrical Engineering, 77, 230–243.

    Article  Google Scholar 

  183. Sahoo, A., & Chandra, S. (2017). Multi-objective grey wolf optimizer for improved cervix lesion classification. Applied Soft Computing, 52, 64–80.

    Article  Google Scholar 

  184. Kaur, T., Saini, B. S., & Gupta, S. (2018). A novel feature selection method for brain tumor MR image classification based on the Fisher criterion and parameter-free bat optimization. Neural Computing and Applications, 29(8), 193–206.

    Article  Google Scholar 

  185. Sudha, M., & Selvarajan, S. (2016). Feature selection based on enhanced cuckoo search for breast cancer classification in mammogram image. Circuits and Systems, 7(04), 327–338.

    Article  Google Scholar 

  186. Kavitha, C., & Chellamuthu, C. (2014). Medical image fusion based on hybrid intelligence. Applied Soft Computing, 20, 83–94.

    Article  Google Scholar 

  187. Wachowiak, M. P., Smolíková, R., Zheng, Y., Zurada, J. M., & Elmaghraby, A. S. (2004). An approach to multimodal biomedical image registration utilizing particle swarm optimization. IEEE Transactions on Evolutionary Computation, 8(3), 289–301.

    Article  Google Scholar 

  188. Talbi, H., & Batouche, M. (2004). Hybrid particle swarm with differential evolution for multimodal image registration. In 2004 IEEE International Conference on Industrial Technology, 2004. IEEE ICIT’04. (Vol. 3, pp. 1567–1572). IEEE. 10.1109/ICIT.2004.1490800

  189. Rundo, L., Tangherloni, A., Militello, C., Gilardi, M. C., & Mauri, G. (2016). Multimodal medical image registration using particle swarm optimization: A review. In 2016 IEEE Symposium Series on Computational Intelligence (SSCI) (pp. 1–8). IEEE. 10.1109/SSCI.2016.7850261

  190. Daniel, E., Anitha, J., Kamaleshwaran, K., & Rani, I. (2017). Optimum spectrum mask based medical image fusion using gray wolf optimization. Biomedical Signal Processing and Control, 34, 36–43.

    Article  Google Scholar 

  191. Parvathy, V. S., & Pothiraj, S. (2020). Multi-modality medical image fusion using hybridization of binary crow search optimization. Health Care Management Science, 23(4), 661–669.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María-Luisa Pérez-Delgado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pérez-Delgado, ML. (2023). Swarm-Based Methods Applied to Computer Vision. In: Kumar, B.V., Sivakumar, P., Surendiran, B., Ding, J. (eds) Smart Computer Vision. EAI/Springer Innovations in Communication and Computing. Springer, Cham. https://doi.org/10.1007/978-3-031-20541-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20541-5_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20540-8

  • Online ISBN: 978-3-031-20541-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics