Skip to main content

Shot Boundary Detection from Lecture Video Sequences Using Histogram of Oriented Gradients and Radiometric Correlation

  • Chapter
  • First Online:
Smart Computer Vision

Abstract

In this chapter, we put forward a new technique for lecture video segmentation and key frame extraction. In this chapter, the advantages of Histogram of Oriented Gradients (HOG) features and radiometric correlation with entropic measures are explored to detect the shot boundaries and the key frames of the lecture video sequences. In the initial stage of the algorithm, HOG feature is used to project all frames into an n-dimensional feature space. The similarities between the n-dimensional extracted HOG features for two consecutive frames are obtained using radiometric correlation measure. The radiometric correlation between the successive frames of the video is found to have a significant amount of uncertainty, due to variation in color, illumination, or object motion. We have used entropic measure to find the shot boundaries. The key frames are obtained after detection of the shot boundaries by analyzing the peaks and valleys of the radiometric correlation measures. The proposed scheme is tested on several lecture video sequences and compared against six existing state-of-the-art techniques by considering two evaluation measures: computational time and shot transitions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hu, W., Xie, N., Li, L., Zeng, X., & Maybank, S. (2011). A survey on visual content-based video indexing and retrieval. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 41, 797–819.

    Article  Google Scholar 

  2. Zhang, H. J., Kankanhalli, A., & Smoliar, S. W. (1993). Automatic partitioning of full-motion video. ACM/Springer Multimedia System, 1, 10–28.

    Article  Google Scholar 

  3. Huang, C. L., & Liao, B. Y. (2001). A robust scene-change detection method for video segmentation. IEEE Transactions on Circuits and Systems for Video Technology, 11, 1281–1288.

    Article  Google Scholar 

  4. Borecsky, J. S., & Rowe, L. A. (1996). Comparison of video shot boundary detection techniques. Proceedings of SPIE, 2670, 170–179.

    Article  Google Scholar 

  5. Grana, C., & Cucchiara, R. (2007). Linear transition detection as a unified shot detection approach. IEEE Transactions on Circuits and Systems for Video Technology, 17, 483–489.

    Article  Google Scholar 

  6. Patel, N. V., & Sethi, I. K. (1997). Video shot detection and characterization for video databases. Pattern Recognition, 30, 583–592.

    Article  Google Scholar 

  7. Cernekova, Z., Pitas, I., & Nikou, C. (2006). Information theory-based shot cut/fade detection and video summarization. IEEE Transactions on Circuits and Systems for Video Technology, 16, 82–91.

    Article  Google Scholar 

  8. Lee, M. H., Yoo, H. W., & Jang, D. S. (2006). Video scene change detection using neural network: Improved ART2. Expert Systems and Applications, 31, 13–25.

    Article  Google Scholar 

  9. Cooper, M., & Foote, J. (2005). Discriminative techniques for keyframe selection. In Proceedings of ICME (pp. 502–505). Amsterdam, The Netherlands.

    Google Scholar 

  10. Haoran, Y., Rajan, D., & Chia, L. T. (2006). A motion-based scene tree for browsing and retrieval of compressed video. Information Systems, 31, 638–658.

    Article  Google Scholar 

  11. Cooper, M., Liu, T., & Rieffel, E. (2007). Video segmentation via temporal pattern classification. IEEE Transactions on Multimedia, 9, 610–618.

    Article  Google Scholar 

  12. Duan, F. F., & Meng, F. (2020). Video shot boundary detection based on feature fusion and clustering technique. IEEE Access, 8, 214633–214645.

    Article  Google Scholar 

  13. Abdulhussain, S. H., Ramli, A. R., Mahmmod, B. M., Saripan, M. I., Al-Haddad, S. A. R., & Jassim, W. A. (2019). Shot boundary detection based on orthogonal polynomial. Multimedia Tools and Applications, 78(14), 20361–20382.

    Article  Google Scholar 

  14. Lei, S., Xie, G., & Yan, G. (2014). A novel key-frame extraction approach for both video summary and video index. The Scientific World Journal, 1–9.

    Google Scholar 

  15. Bendraou, Y., Essannouni, F., Aboutajdine, D., & Salam, A. (2017). Shot boundary detection via adaptive low rank and SVD-updating. Computer Vision and Image Understanding, 161, 20–28.

    Article  Google Scholar 

  16. Barbieri, T. T. S., & Goularte, R. (2014). KS-SIFT: a keyframe extraction method based on local features. In IEEE International Symposium on Multimedia (pp. 13–17). Taichung.

    Google Scholar 

  17. Dang, C., & Radha, H. (2015). RPCA-KFE: Key frame extraction for video using robust principal component analysis. IEEE Transactions on Image Processing, 24, 3742–3753.

    Article  MathSciNet  MATH  Google Scholar 

  18. Dalal, N., & Triggs, B. (2005). Histogram of oriented gradients for human detection. Proceedings of CVPR, 1, 886–893.

    Google Scholar 

  19. Spagnolo, P., Orazio, T. D., Leo, M., & Distante, A. (2006). Moving object segmentation by background subtraction and temporal analysis. Image and Vision Computing, 24, 411–423.

    Article  Google Scholar 

  20. Zabih, R., Miller, J., & Mai, K. A. (1995). A feature-based algorithm for detecting and classifying scene breaks. In Proceedings of ACM Multimedia (pp. 189–200). San Francisco, CA.

    Google Scholar 

  21. Singh, A., Thounaojam, D. M., & Chakraborty, S. (2020, June). A novel automatic shot boundary detection algorithm: Robust to illumination and motion effect. Signal, Image Video Process., 14(4), 645–653.

    Article  Google Scholar 

  22. Subudhi, B. N., Veerakumar, T., Esakkirajan, S., & Chaudhury, S. (2020). Automatic lecture video skimming using shot categorization and contrast based features. Expert Systems with Applications, 149, 113341.

    Article  Google Scholar 

  23. Shen, R. K., Lin, Y. N., Juang, T. T. Y., Shen, V. R. L., & Lim, S. Y. (2018, March). Automatic detection of video shot boundary in social media using a hybrid approach of HLFPN and keypoint matching. IEEE Transactions on Computational Social Systems, 5(1), 210–219.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Veerakumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Veerakumar, T., Subudhi, B.N., Kumar, K.S., Da Rocha, N.O.F., Esakkirajan, S. (2023). Shot Boundary Detection from Lecture Video Sequences Using Histogram of Oriented Gradients and Radiometric Correlation. In: Kumar, B.V., Sivakumar, P., Surendiran, B., Ding, J. (eds) Smart Computer Vision. EAI/Springer Innovations in Communication and Computing. Springer, Cham. https://doi.org/10.1007/978-3-031-20541-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20541-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20540-8

  • Online ISBN: 978-3-031-20541-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics