Skip to main content

Content-Based Image Retrieval Using Deep Features and Hamming Distance

  • Chapter
  • First Online:
Smart Computer Vision

Part of the book series: EAI/Springer Innovations in Communication and Computing ((EAISICC))

  • 640 Accesses

Abstract

Content-based image retrieval is a method of retrieving images based on its semantic features. Classical CBIR models in the literature uses low-level features like color, shape, and texture to retrieve similar images from the database. Low-level features work well when the dataset is small; however, it fails to reduce the semantic gap when the image database becomes large and diverse. In the recent past, many researchers have exploited the usage of pretrained neural network as a feature extractor capable of giving a high-level feature representation for images. In this chapter, we use the output vectors of intermediate layers of an Inception Resnet deep learning model as the feature representation for image retrieval. The high-level feature vectors obtained from the deep layers of Inception Resnet are clustered using K-means clustering algorithm to make the retrieval process faster. The second part of the chapter explores various distance metrics to find most similar images corresponding to the query image. Based on the analysis on various distance measures, it is found that Hamming distance performs better than Euclidean distance in retrieving similar images when using deep features owing to the sparse nature of the feature vectors produced by the intermediate deep layers of Inception Resnet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pass, G., & Zabih, R. (1996). Histogram refinement for content-based image retrieval. In Proceedings third IEEE workshop on applications of computer vision. WACV'96 (pp. 96–102). https://doi.org/10.1109/ACV.1996.572008

    Chapter  Google Scholar 

  2. Konstantinidis, K., Gasteratos, A., & Andreadis, I. (2005). Image retrieval based on fuzzy color histogram processing. Optics Communications, 248(4–6), 375–386.

    Article  Google Scholar 

  3. Jain, A. K., & Vailaya, A. (1996). Image retrieval using color and shape. Pattern Recognition, 29(8), 1233–1244.

    Article  Google Scholar 

  4. Folkers, A., & Samet, H. (2002). Content-based image retrieval using Fourier descriptors on a logo database. In Object recognition supported by user interaction for service robots (Vol. 3). IEEE.

    Google Scholar 

  5. Manjunath, B. S., & Ma, W. Y. (1996). Texture features for browsing and retrieval of image data. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(8), 837–842. https://doi.org/10.1109/34.531803

    Article  Google Scholar 

  6. Hörster, E., Lienhart, R., & Slaney, M. (2007). Image retrieval on large-scale image databases. Proceedings of the 6th ACM international conference on Image and video retrieval.

    Google Scholar 

  7. Fukushima, K., & Miyake, S. (1982). Neocognitron: A self-organizing neural network model for a mechanism of visual pattern recognition. In Competition and cooperation in neural nets (pp. 267–285). Springer.

    Chapter  Google Scholar 

  8. Haralick, R. M., Shanmugam, K., & Dinstein, I.'. H. (1973). Textural features for image classification. IEEE Transactions on Systems, Man, and Cybernetics, 6, 610–621.

    Article  Google Scholar 

  9. Szegedy, C., et al. (2016). Rethinking the inception architecture for computer vision. Proceedings of the IEEE conference on computer vision and pattern recognition.

    Google Scholar 

  10. LeCun, Y., et al. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324.

    Article  Google Scholar 

  11. Wan, J., et al. (2014). Deep learning for content-based image retrieval: A comprehensive study. Proceedings of the 22nd ACM international conference on Multimedia.

    Google Scholar 

  12. Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167.

    Google Scholar 

  13. Nair, V., & Hinton, G. E. (2010). Rectified linear units improve restricted boltzmann machines. ICML.

    Google Scholar 

  14. Pan, S. J., & Yang, Q. (2009). A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering, 22(10), 1345–1359.

    Article  Google Scholar 

  15. Likas, A., Vlassis, N., & Verbeek, J. J. (2003). The global k-means clustering algorithm. Pattern Recognition, 36(2), 451–461.

    Article  Google Scholar 

  16. Danielsson, P.-E. (1980). Euclidean distance mapping. Computer Graphics and Image Processing, 14(3), 227–248.

    Article  Google Scholar 

  17. Norouzi, M., Fleet, D. J., & Salakhutdinov, R. R. (2012). Hamming distance metric learning. In Advances in neural information processing systems.

    Google Scholar 

  18. Wang, J. Z., Li, J., & Wiederhold, G. (2001). SIMPLIcity: Semantics-sensitive integrated matching for picture libraries. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(9), 947–963.

    Article  Google Scholar 

  19. Tao, D., et al. (2006). Direct kernel biased discriminant analysis: A new content-based image retrieval relevance feedback algorithm. IEEE Transactions on Multimedia, 8(4), 716–727.

    Article  MathSciNet  Google Scholar 

  20. Bian, W., & Tao, D. (2009). Biased discriminant Euclidean embedding for content-based image retrieval. IEEE Transactions on Image Processing, 19(2), 545–554.

    Article  MathSciNet  MATH  Google Scholar 

  21. Haldurai, L., & Vinodhini, V. (2015). Parallel indexing on color and texture feature extraction using R-tree for content based image retrieval. International Journal of Computer Sciences and Engineering, 3, 11–15.

    Google Scholar 

  22. Lin, K., et al. (2015). Deep learning of binary hash codes for fast image retrieval. Proceedings of the IEEE conference on computer vision and pattern recognition workshops.

    Google Scholar 

  23. Babenko, A., et al. (2014). Neural codes for image retrieval. In European conference on computer vision. Springer.

    Google Scholar 

  24. Chollet, F., et al. (2015). Keras. https://keras.io.

  25. Putzu, L., Piras, L., & Giacinto, G. (2020). Convolutional neural networks for relevance feedback in content based image retrieval. Multimedia Tools and Applications, 79(37), 26995–27021.

    Article  Google Scholar 

  26. Irtaza, A., Jaar, M. A., Aleisa, E., & Choi, T.-S. (2014). Embedding neural networks for semantic association in content based image retrieval. Multimedia Tools and Applications, 72(2), 1911{1931}.

    Article  Google Scholar 

  27. Lin, C.-H., Chen, R.-T., & Chan, Y.-K. (2009). A smart content-based image retrieval system based on color and texture feature. Image and Vision Computing, 27(6), 658{665}.

    Article  Google Scholar 

  28. Wang, X.-Y., Yu, Y.-J., & Yang, H.-Y. (2011). An e_ective image retrieval scheme using color, texture and shape features. Computer Standards & Interfaces, 33(1), 59{68}.

    Article  Google Scholar 

  29. Walia, E., & Pal, A. (2014). Fusion framework for e_ective color image retrieval. Journal of Visual Communication and Image Representation, 25(6), 1335{1348.

    Article  Google Scholar 

  30. Walia, E., Vesal, S., & Pal, A. (2014). An e_ective and fast hybrid framework for color image retrieval. Sensing and Imaging, 15(1), 93.

    Article  Google Scholar 

  31. Hamreras, S., et al. (2019). Content based image retrieval by convolutional neural networks. In International work-conference on the interplay between natural and artificial computation. Springer.

    Google Scholar 

  32. Sikha, O. K., & Soman, K. P. (2021). Dynamic Mode Decomposition based salient edge/region features for content based image retrieval. Multimedia Tools and Applications, 80, 15937.

    Article  Google Scholar 

  33. Akshaya, B., Sri, S., Sathish, A., Shobika, K., Karthika, R., & Parameswaran, L. (2019). Content-based image retrieval using hybrid feature extraction techniques. In Lecture notes in computational vision and biomechanics (pp. 583–593).

    Google Scholar 

  34. Karthika, R., Alias, B., & Parameswaran, L. (2018). Content based image retrieval of remote sensing images using deep learning with distance measures. Journal of Advanced Research in Dynamical and Control System, 10(3), 664–674.

    Google Scholar 

  35. Divya, M. O., & Vimina, E. R. (2019). Performance analysis of distance metric for content based image retrieval. International Journal of Engineering and Advanced Technology (IJEAT), 8(6), 2249.

    Google Scholar 

  36. Byju, A. P., Demir, B., & Bruzzone, L. (2020). A progressive content-based image retrieval in JPEG 2000 compressed remote sensing archives. IEEE Transactions on Geoscience and Remote Sensing, 58, 5739–5751.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. K. Sikha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Akash Guna, R.T., Sikha, O.K. (2023). Content-Based Image Retrieval Using Deep Features and Hamming Distance. In: Kumar, B.V., Sivakumar, P., Surendiran, B., Ding, J. (eds) Smart Computer Vision. EAI/Springer Innovations in Communication and Computing. Springer, Cham. https://doi.org/10.1007/978-3-031-20541-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20541-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20540-8

  • Online ISBN: 978-3-031-20541-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics