Skip to main content

Pleural Effusion Detection Using Machine Learning and Deep Learning Based on Computer Vision

  • Conference paper
  • First Online:
Proceedings of the 8th International Conference on Advanced Intelligent Systems and Informatics 2022 (AISI 2022)

Abstract

Pleural effusion is one of the serious chest diseases that affect human life depending on the causes, such as malignant tumors, liver, kidney or chest failure, and the risks increase with the delay in diagnosis and treatment. In recent years, artificial intelligence (AI) has achieved a significant development in the medical field. As part of artificial intelligence, deep learning (DL), machine learning (ML), and computer vision (CV) have become very important in the diagnosis and treatment of diseases, as they help in terms of early and accurate diseases diagnosis and suggesting the best treatments. Furthermore, with the widespread use of medical images in diagnosing diseases, the need for computer vision, machine learning, and deep learning to analyze and understand those images, and to help clinicians make quick and accurate diagnoses has increased. In this paper, machine learning model i.e., artificial neural network (ANN), and deep learning models i.e., AlexNet, GoogleNet, SqueezeNet, and DarkNet19, are used to detect the presence or absence of pleural effusion in Chest X-ray14 dataset images. We have used 80% of the dataset for training the models, and the remaining 20% for testing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jahn, I.J., Radu, A.I., Weber, et al.: Surface enhanced raman spectroscopy for medical diagnostics. In: Nanotechnology Characterization Tools for Biosensing and Medical Diagnosis, vol. 8, pp. 1–66. Springer, Berlin, Heidelberg https://doi.org/10.1007/978-3-662-56333-5_1 (2018)

  2. Wang, H., Jia, H., Lu, L., Xia, Y.: Thorax-net: an attention regularized deep neural network for classification of thoracic diseases on chest radiography. IEEE J. Biomed. Health Inf. 24, 475–485 (2020). https://doi.org/10.1109/JBHI.2019.2928369

    Article  Google Scholar 

  3. Shadeed, G.A., Tawfeeq, M.A., Mahmoud, S.M.: Deep learning model for thorax diseases detection. Telkomnika J. 18, 441–449 (2020). https://doi.org/10.12928/TELKOMNIKA.v18i1.12997

    Article  Google Scholar 

  4. Liu, X.T., Dong, X.L., Zhang, Y., et al.: Diagnostic value and safety of medical thoracoscopy for pleural effusion of different causes. World J. Clin. Cases 10(10), 3088–3100 (2022). https://doi.org/10.12998/wjcc.v10.i10.3088

    Article  Google Scholar 

  5. Markatis, E., Perlepe, G., et al.: Mortality among hospitalized patients with pleural effusions. A multicenter, observational, prospective study. Front. Med. 9, 2–8 (2022). https://doi.org/10.3389/fmed.2022.828783

    Article  Google Scholar 

  6. Khanh, T.K., Jeonghwan, G.: Utilizing knowledge distillation in deep learning for classification of ChestX-Ray abnormalities. IEEE Access 8, 160749–160761 (2020). https://doi.org/10.1109/ACCESS.2020.3020802

    Article  Google Scholar 

  7. Zhou, S.K., Greenspan, H., et al.: A review of deep learning in medical imaging: imaging traits, technology trends, case studies with progress highlights, and future promises. Proc. IEEE 109, 820–838 (2021). https://doi.org/10.1109/JPROC.2021.3054390

    Article  Google Scholar 

  8. Wang, J., Zhu, H., Wang, S.-H., Zhang, Y.-D.: A review of deep learning on medical image analysis. Mobile Netw. Appl. 26(1), 351–380 (2020). https://doi.org/10.1007/s11036-020-01672-7

    Article  Google Scholar 

  9. Bhattacharya, S., Maddikunta, P.K., et al.: Deep learning and medical image processing for coronavirus (COVID-19) pandemic: a survey. Sustain. Cities Soc. 65, 102589 (2021). https://doi.org/10.1016/j.scs.2020.102589

    Article  Google Scholar 

  10. Thevenot, J., Lopez, M., et al.: A survey on computer vision for assistive medical diagnosis from faces. IEEE J. Biomed. Health Inform. 22, 1497–1511 (2018). https://doi.org/10.1109/JBHI.2017.2754861

    Article  Google Scholar 

  11. Abdullah, S.M., Ameen, S.Y.: Multimodal emotion recognition using deep learning. J. Appl. Sci. Technol. Trends 2, 52–58 (2021). https://doi.org/10.38094/jastt20291

    Article  Google Scholar 

  12. Luo, X., Zhang, J., et al.: Diagnosis of ulcerative colitis from endoscopic images based on deep learning. Biomed. Signal Process. Control 73, 103443 (2022). https://doi.org/10.1016/j.bspc.2021.103443

    Article  Google Scholar 

  13. Wu, X., Chen, C., et al.: COVID-AL: the diagnosis of COVID-19 with deep active learning. Med. Image Anal. 68, 101913 (2021). https://doi.org/10.1016/j.media.2020.101913

    Article  Google Scholar 

  14. Pham, H.H., Le, T.T., et al.: Interpreting chest X-rays via CNNs that exploit hierarchical disease dependencies and uncertainty labels. Neurocomputing 437, 186–194 (2020). https://doi.org/10.1016/j.neucom.2020.03.127

    Article  Google Scholar 

  15. Zaidi, S.Y., Akram, M.U., et al.: Lung segmentation-based pulmonary disease classification using deep neural networks. IEEE Access 9, 125202–125214 (2021). https://doi.org/10.1109/ACCESS.2021.3110904

    Article  Google Scholar 

  16. Kwon, T., Lee, S.P., et al.: Diagnostic performance of artificial intelligence model for pneumonia from chest radiography. PLoS ONE 16(4), 0249399 (2021). https://doi.org/10.1371/journal.pone.0249399

    Article  Google Scholar 

  17. Tian, Y., Wang, J., et al.: Deep multi-instance transfer learning for pneumothorax classification in chest X-ray images. Med. Phys. 49, 231–243 (2022). https://doi.org/10.1002/mp.15328

    Article  Google Scholar 

  18. Thian, Y.L., Ng, D.W., et al.: Effect of training data volume on performance of convolutional neural network pneumothorax classifiers. J. Digital Imaging 1–12. https://doi.org/10.1007/s10278-022-00594-y (2022)

  19. Chen, L., Mao, T., Zhang, Q.: Identifying cardiomegaly in chest x-rays using dual attention network. Appl. Intell. 110. https://doi.org/10.1007/s10489-021-02935-w (2022)

  20. Guan, Q., Huang, Y., et al.: Discriminative feature learning for thorax disease classification in chest X-ray images. IEEE Trans. Image Process. 30, 2476–2487 (2021). https://doi.org/10.1109/TIP.2021.3052711

    Article  Google Scholar 

  21. Ouyang, X., Karanam, S., et al.: Learning hierarchical attention for weakly-supervised chest X-Ray abnormality localization and diagnosis. IEEE Trans. Image Process. 40(10), 2698–2710 (2021). https://doi.org/10.1109/TMI.2020.3042773

    Article  Google Scholar 

  22. Mao, C., Yao, L., Luo, Y.: ImageGCN: multi-relational image graph convolutional networks for disease identification with chest X-rays. IEEE Trans. Image Process. (2022). https://doi.org/10.1109/TMI.2022.3153322

    Article  Google Scholar 

  23. Nahiduzzaman, M., Goni, M., et al.: A novel method for multivariant pneumonia classification based on hybrid CNN-PCA based feature extraction using extreme learning machine with CXR images. IEEE Access 9,(2021). https://doi.org/10.1109/TMI.2022.3153322

  24. Clinical Center. https://nihcc.app.box.com/v/ChestXray-NIHCC. Accessed 27 May 2022

  25. Cameron, R., Robert, J., et al.: Clinical applications of machine learning in the diagnosis, classification, and prediction of heart failure. Am. Heart J. https://doi.org/10.1016/j.ahj.2020.07.009 (2021)

  26. Sarangi, S., Sahidullah, M., Saha, G.: Optimization of data-driven filterbank for automatic speaker verification. Digit. Signal Process. 104, 102795 (2020). https://doi.org/10.1016/j.dsp.2020.102795

    Article  Google Scholar 

  27. MathWorks. https://www.mathworks.com/help/images/texture-analysis-using-the-gray-level-co-occurrence-matrix-glcm.html. Accessed 24 May 2022

  28. Hossam, A., Fawzy, A., Elnaghi, B.E., Magdy, A.: An intelligent model for rapid diagnosis of patients with COVID-19 based on ANFIS. In: Hassanien, A.E., Snášel, V., Chang, K.-C., Darwish, A., Gaber, T. (eds.) AISI 2021. LNDECT, vol. 100, pp. 338–355. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-89701-7_30

    Chapter  Google Scholar 

  29. http://learningeconometrics.blogspot.com/2016/09/four-moments-of-distribution-mean.html. Accessed 28 May 2022

  30. Anithaashri, T.P., Rajendran, P.S., Ravichandran, G.: Novel intelligent system for medical diagnostic applications using artificial neural network. In: Hemanth, D.J., Pelusi, D., Vuppalapati, C. (eds.) Intelligent Data Communication Technologies and Internet of Things. LNDECT, vol. 101, pp. 93–101. Springer, Singapore (2022). https://doi.org/10.1007/978-981-16-7610-9_7

    Chapter  Google Scholar 

  31. MathWorks. https://www.mathworks.com/discovery/convolutional-neural-network-matlab.html. Accessed 28 May 2022

  32. Alom, M.Z., Taha, T., et al.: The history began from AlexNet: a comprehensive survey on deep learning approaches. ArXiv (2018). https://doi.org/10.48550/arXiv.1803.01164

    Article  Google Scholar 

  33. Sze, V., Chen, Y.H.: Efficient processing of deep neural networks: a tutorial and survey. IEEE 105(12), 17372031 (2017). https://doi.org/10.1109/JPROC.2017.2761740

    Article  Google Scholar 

  34. Nguyen, T., Park, E., et al.: fPADnet: small and efficient convolutional neural network for presentation attack detection. Sensor 18(8), 2532 (2018). https://doi.org/10.3390/s18082532

    Article  Google Scholar 

  35. Islam, M., Tasnim, N., et al.: Human gender classification using transfer learning via Pareto Frontier CNN networks. Inventions 5, 16. https://doi.org/10.3390/inventions5020016 (2020)

  36. https://paperswithcode.com/method/darknet-19. Accessed 29 May 2022

  37. MathWorks. https://www.mathworks.com/help/deeplearning/ref/darknet19.html. Accessed 29 May 2022

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rehab Fathi Ibrahim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ibrahim, R.F., Yhiea, N.M., Mohammed, A.M., Mohamed, A.M. (2023). Pleural Effusion Detection Using Machine Learning and Deep Learning Based on Computer Vision. In: Hassanien, A.E., Snášel, V., Tang, M., Sung, TW., Chang, KC. (eds) Proceedings of the 8th International Conference on Advanced Intelligent Systems and Informatics 2022. AISI 2022. Lecture Notes on Data Engineering and Communications Technologies, vol 152. Springer, Cham. https://doi.org/10.1007/978-3-031-20601-6_19

Download citation

Publish with us

Policies and ethics