Abstract
Internet of Things (IoT) sensors produce a huge amount of data every second. This unexpected data volume needs significant effort to manage, structure, save, and process to produce effective information and best utilize it. Extracting valuable knowledge from this heterogonous data is a high demanding need. Making accurate decisions based on this data was a dream in the near past. Data management and handling data heterogeneity locally on sensor boards and regionally on local servers using Fog and centrally on Cloud acts as an enabler for giving IoT an excellent value even if it faces many complexities and challenges, as discussed in this paper. Moreover, data management in IoT is a serious issue due to communication among billions of devices, which generate massive datasets. Data analysis on such a big volume of data is a difficult undertaking due to the lack of any standard. A definition of IoT-based data should be established to determine what is available and how it can be used. A study like this also points to the need for innovative approaches to deal with such problems. It's a great difficulty to cope with such a range of data as IoT delivers processing nodes in the form of smart nodes due to the heterogeneity of linked nodes, varied data rates, and formats. The Industrial IoT involves real-time analysis of data from interconnected sensor devices. It provides a solid foundation for big data research. Real-time data streaming adds an extra dimension of complexity and involves some more challenges. we briefly outline current open issues of edge computing and cloud computing platforms based on our literature survey for IoT data streaming heterogeneity. Finally, we propose Fog of Things Framework as a solution for all these challenges.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Gazis, V.: A Survey of standards for machine-to-machine and the internet of things. IEEE Commun. Surv. Tutor. 19(1), 482–511 (2017). https://doi.org/10.1109/COMST.2016.2592948
Karpf, B.A.: Dead Reckoning: Where We Stand On Privacy and Security Controls for the Internet of Things. Massachusetts Institute of Technology (2017)
Macaulay, J., Buckalew, L., Chung, G.: Internet of Things in Logistics: A Collaborative Report by DHL and Cisco on Implications and Use Cases for the Logistics Industry (2015)
Park, H., Kim, H., Joo, H., Song, J.S.: Recent advancements in the Internet-of-Things related standards: a oneM2M perspective. ICT Express 2(3), 126–129 (2016). https://doi.org/10.1016/j.icte.2016.08.009
Hossain, M.S., Muhammad, G.: Cloud-assisted Industrial Internet of Things (IIoT) enabled framework for health monitoring. Comput. Netw. 101, 192–202 (2016). https://doi.org/10.1016/j.comnet.2016.01.009
Chen, M., Wan, J., Gonzalez, S., Liao, X., Leung, V.C.M.: A survey of recent developments in home M2M networks. IEEE Commun. Surv. Tutor. 16(1), 98–114 (2014). https://doi.org/10.1109/SURV.2013.110113.00249
Razzaque, M.A., Milojevic-Jevric, M., Palade, A., Cla, S.: Middleware for internet of things: a survey. IEEE Internet Things J. 3(1), 70–95 (2016). https://doi.org/10.1109/JIOT.2015.2498900
Botta, A., De Donato, W., Persico, V., Pescapé, A.: Integration of cloud computing and internet of things: a survey. Futur. Gener. Comput. Syst. 56, 684–700 (2016). https://doi.org/10.1016/j.future.2015.09.021
Stergiou, C., Psannis, K.E., Kim, B.G., Gupta, B.: Secure integration of IoT and cloud computing. Futur. Gener. Comput. Syst. 78, 964–975 (2018). https://doi.org/10.1016/j.future.2016.11.031. December 2017
Ji, B., et al.: Survey on the internet of vehicles: network architectures and applications. IEEE Commun. Stand. Mag. 4(1), 34–41 (2020). https://doi.org/10.1109/MCOMSTD.001.1900053
Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M.: Internet of Things (IoT): a vision, architectural elements, and future directions. Futur. Gener. Comput. Syst. 29(7), 1645–1660 (2013). https://doi.org/10.1016/j.future.2013.01.010
Ullah, A., Mohd Nawi, N., Hayat Khan, M., Khan, H.A.: Rise of big data due to hybrid platform of cloud computing and Internet of Thing. J. Soft Comput. Data Min. 01(01), 46–54 (2020). https://doi.org/10.30880/jscdm.2020.01.01.006
Kosmatos, E.A., Tselikas, N.D., Boucouvalas, A.C.: Integrating RFIDs and smart objects into a Unifiedinternet of Things architecture (Jan 2011). https://doi.org/10.4236/ait.2011.11002
Khodkari, H., Maghrebi, S.G.: Necessity of the integration Internet of Things and cloud services with quality of service assurance approach. Bull. la Société R. des Sci. Liège 85, pp. 434–445 (2016)
Diène, B., Rodrigues, J.J.P.C., Diallo, O., Ndoye, E.H.M., Korotaev, V.V.: Data management techniques for Internet of Things. Mech. Syst. Signal Process. 138, 106564 (2020). https://doi.org/10.1016/J.YMSSP.2019.106564
Atzori, L., Iera, A., Morabito, G.: Understanding the Internet of Things: definition, potentials, and societal role of a fast evolving paradigm. Ad Hoc Netw. 56, 122–140 (2017). https://doi.org/10.1016/j.adhoc.2016.12.004
Mashal, I., Alsaryrah, O., Chung, T.Y., Yang, C.Z., Kuo, W.H., Agrawal, D.P.: Choices for interaction with things on Internet and underlying issues. Ad Hoc Netw. 28, 68–90 (2015). https://doi.org/10.1016/j.adhoc.2014.12.006
Sonntag, M., Mehmann, J., Teuteberg, F.: Application of Industry 4.0 in the Automotive Sector (Sep 2021)
Diene, B., Diallo, O., Rodrigues, J.J.P.C., Ndoye, E.H.M., Teodorov, C.: Data management mechanisms for IoT: architecture, challenges and solutions. In: 2020 5th International Conference on Smart and Sustainable Technologies, SpliTech, 2020, pp. 1–6. https://doi.org/10.23919/SpliTech49282.2020.9243728
Huacarpuma, R.C., De Sousa Junior, R.T., De Holanda, M.T., de O. Albuquerque, R., Villalba, L.J.G., Kim, T.H.: Distributed data service for data management in internet of things middleware. Sensors (Switzerland) 17(5) (2017). https://doi.org/10.3390/s17050977
Celesti, A., et al.: Information management in IoT cloud-based tele-rehabilitation as a service for smart cities: comparison of NoSQL approaches. Meas. J. Int. Meas. Confed. 151, 107218 (2020). https://doi.org/10.1016/j.measurement.2019.107218
Alreshidi, E.J., Arabia, S.: Introducing Fog Computing (FC) technology to Internet of Things (IoT) cloud-based anti-theft vehicles solutions. Int. J. Syst. Dyn. Appl. 11(3), 1–21 (2022). https://doi.org/10.4018/IJSDA.287114
Mohammadi, M., Al-Fuqaha, A., Sorour, S., Guizani, M.: Deep learning for IoT big data and streaming analytics: a survey. IEEE Commun. Surv. Tutor. 20(4), 2923–2960 (2018). https://doi.org/10.1109/COMST.2018.2844341
Ahad, M.A., Tripathi, G., Zafar, S., Doja, F.: IoT data management—security aspects of information linkage in IoT systems. In: Peng, S.-L., Pal, S., Huang, L. (eds.) Principles of Internet of Things (IoT) Ecosystem: Insight Paradigm, pp. 439–464. Springer International Publishing (2020)
Atlam, H.F.: Fog Computing and the Internet of Things: A Review, pp. 1–18 (2018). https://doi.org/10.3390/bdcc2020010
Mahmud, R., Kotagiri, R., Buyya, R.: Fog computing: a taxonomy, survey and future directions. In: Di Martino, B., Li, K.-C., Yang, L.T., Esposito, A. (eds.) Internet of Everything: Algorithms, Methodologies, Technologies and Perspectives, pp. 103–130. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-5861-5_5
Chiang, M., Zhang, T.: Fog and IoT: an overview of research opportunities. IEEE Internet Things J. 3(6), 854–864 (2016). https://doi.org/10.1109/JIOT.2016.2584538
Wang, T., Liang, Y., Jia, W., Arif, M., Liu, A., Xie, M.: Coupling resource management based on fog computing in smart city systems. J. Netw. Comput. Appl. 135, 11–19 (2019). https://doi.org/10.1016/j.jnca.2019.02.021. September 2018
Díaz, M., Martín, C., Rubio, B.: State-of-the-art, challenges, and open issues in the integration of Internet of things and cloud computing. J. Netw. Comput. Appl. 67, 99–117 (2016). https://doi.org/10.1016/j.jnca.2016.01.010
Islam, T.: A Study on Big Data Management Strategy Using Fog Computing. Khulna University of Engineering & Technology (KUET), Khulna, Bangladesh (2018)
Borujeni, E.M., Rahbari, D., Nickray, M.: Fog-based energy-efficient routing protocol for wireless sensor networks. J. Supercomput. 74(12), 6831–6858 (2018). https://doi.org/10.1007/s11227-018-2514-3
Yi, S., Li, C., Li, Q.: A survey of fog computing: concepts, applications and issues. In: Proceedings of the International Symposium on Mobile Ad Hoc Networking and Computing, vol. 2015-June, no. August, pp. 37–42 (2015). https://doi.org/10.1145/2757384.2757397
Miani, R., Camargos, L., Zarpelão, B., Rosas, E., Pasquini, R. (eds.): GPC 2019. LNCS, vol. 11484. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19223-5
Macaulay, J., Buckalew, L., Chung, G.: Internet of things in logistics. DHL Trend Res. 1(1), 1–27 (2015)
Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its role in the internet of things. In: MCC’12-Proceedings of the 1st ACM Mobile Cloud Computing Work, pp. 13–15 (2012). https://doi.org/10.1145/2342509.2342513
Ribeiro, F.M., Bianchi, R.A.C., Prati, R.C., Kolehmainen, K., Soininen, J., Kamienski, C.A.: Data reduction based on machine learning algorithms for fog computing in IoT smart agriculture. Biosyst. Eng. (2022). https://doi.org/10.1016/j.biosystemseng.2021.12.021
Bukhari, M.M., et al.: An Intelligent Proposed Model for Task Offloading in Fog-Cloud Collaboration Using Logistics Regression, vol. 2022 (2022)
Kamruzzaman, M.M., Yan, B., Sarker, N.I., Alruwaili, O., Wu, M., Alrashdi, I.: Blockchain and Fog Computing in IoT-Driven Healthcare Services for Smart Cities, vol. 2022 (2022)
Hewa, T., Member, S., Braeken, A.: Fog Computing and Blockchain based Security Service Architecture for 5G Industrial IoT enabled Cloud Manufacturing, vol. 3203, no. c, pp. 1–11 (2022). https://doi.org/10.1109/TII.2022.3140792
Jain, S., Gupta, S.: Fog Computing in Enabling 5G-Driven Emerging Technologies for Development of Sustainable Smart City Infrastructures, vol. 0123456789. Springer US (2021)
Gill, S.S.: A manifesto for modern fog and edge computing: vision, new paradigms, opportunities, and future directions. In: Thirunavukarasu, R.N.R. (ed.) Operationalizing Multi-Cloud Environments: Technologies, Tools and Use Cases, no. 2022, pp. 237–253. Springer, Cham (2022)
Ahlmeyer, M., Chircu, A.M.: Securing the Internet of Things: a review. Issues Inf. Syst. 17(Iv), 21–28 (2016). http://www.iacis.org/iis/2016/4_iis_2016_21-28.pdf
Yi, S., Li, C., Li, Q.: A survey of fog computing. In: Proceedings of the 2015 Workshop on Mobile Big Data-Mobidata ’15, no. June 2015, pp. 37–42 (2015). https://doi.org/10.1145/2757384.2757397
Flavio Bonomi, Rodolfo Milito, Preethi Natarajan, and Jiang Zhu, “Fog Computing: A Platform for Internet of Things and Analytics,” in Big data and internet of things: A roadmap for smart environments, vol. 546, no. 2014, Cham: Springer, 2014, pp. 169–186
Pang, J., Huang, Y., Xie, Z., Han, Q., Cai, Z.: Realizing the heterogeneity: a self-organized federated learning framework for IoT. IEEE Internet Things J. 8(5), 3088–3098 (2021). https://doi.org/10.1109/JIOT.2020.3007662
Oppitz, M., Tomsu, P.: Inventing the Cloud Century (2018)
Khodadadi, F., Calheiros, R.N., Buyya, R.: A data-centric framework for development and deployment of Internet of Things applications in clouds (2015). https://doi.org/10.1109/ISSNIP.2015.7106952
Omar, H.A., Lu, N., Zhuang, W.: Wireless access technologies for vehicular network safety applications. IEEE Netw. 20(4), 22–26 (2016)
Kuran, M.S., Tugcu, T.: A survey on emerging broadband wireless access technologies. Comput. Netw. 51(11), 3013–3046 (2007). https://doi.org/10.1016/j.comnet.2006.12.009
de O. Cruz, B.: Impact of M2M Communications on Cellular Telecommunications Networks. Universidade de Aveiro (2013)
Cao, J., Yu, P., Ma, M., Member, S., Gao, W.: Fast Authentication and Data Transfer Scheme for Massive NB-IoT Devices in 3GPP 5G Network, vol. 6, no. 2, pp. 1561–1575 (2019)
Dawood, M.: Automotive Cognitive Access: Towards Customized Vehicular Communication System. University of Plymouth (2020)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Zahran, S., Elkadi, H., Helm, W. (2023). Fog of Things Framework to Handle Data Streaming Heterogeneity on Internet of Things. In: Hassanien, A.E., Snášel, V., Tang, M., Sung, TW., Chang, KC. (eds) Proceedings of the 8th International Conference on Advanced Intelligent Systems and Informatics 2022. AISI 2022. Lecture Notes on Data Engineering and Communications Technologies, vol 152. Springer, Cham. https://doi.org/10.1007/978-3-031-20601-6_53
Download citation
DOI: https://doi.org/10.1007/978-3-031-20601-6_53
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20600-9
Online ISBN: 978-3-031-20601-6
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)