Skip to main content

Fog of Things Framework to Handle Data Streaming Heterogeneity on Internet of Things

  • Conference paper
  • First Online:
Proceedings of the 8th International Conference on Advanced Intelligent Systems and Informatics 2022 (AISI 2022)

Abstract

Internet of Things (IoT) sensors produce a huge amount of data every second. This unexpected data volume needs significant effort to manage, structure, save, and process to produce effective information and best utilize it. Extracting valuable knowledge from this heterogonous data is a high demanding need. Making accurate decisions based on this data was a dream in the near past. Data management and handling data heterogeneity locally on sensor boards and regionally on local servers using Fog and centrally on Cloud acts as an enabler for giving IoT an excellent value even if it faces many complexities and challenges, as discussed in this paper. Moreover, data management in IoT is a serious issue due to communication among billions of devices, which generate massive datasets. Data analysis on such a big volume of data is a difficult undertaking due to the lack of any standard. A definition of IoT-based data should be established to determine what is available and how it can be used. A study like this also points to the need for innovative approaches to deal with such problems. It's a great difficulty to cope with such a range of data as IoT delivers processing nodes in the form of smart nodes due to the heterogeneity of linked nodes, varied data rates, and formats. The Industrial IoT involves real-time analysis of data from interconnected sensor devices. It provides a solid foundation for big data research. Real-time data streaming adds an extra dimension of complexity and involves some more challenges. we briefly outline current open issues of edge computing and cloud computing platforms based on our literature survey for IoT data streaming heterogeneity. Finally, we propose Fog of Things Framework as a solution for all these challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gazis, V.: A Survey of standards for machine-to-machine and the internet of things. IEEE Commun. Surv. Tutor. 19(1), 482–511 (2017). https://doi.org/10.1109/COMST.2016.2592948

    Article  Google Scholar 

  2. Karpf, B.A.: Dead Reckoning: Where We Stand On Privacy and Security Controls for the Internet of Things. Massachusetts Institute of Technology (2017)

    Google Scholar 

  3. Macaulay, J., Buckalew, L., Chung, G.: Internet of Things in Logistics: A Collaborative Report by DHL and Cisco on Implications and Use Cases for the Logistics Industry (2015)

    Google Scholar 

  4. Park, H., Kim, H., Joo, H., Song, J.S.: Recent advancements in the Internet-of-Things related standards: a oneM2M perspective. ICT Express 2(3), 126–129 (2016). https://doi.org/10.1016/j.icte.2016.08.009

    Article  Google Scholar 

  5. Hossain, M.S., Muhammad, G.: Cloud-assisted Industrial Internet of Things (IIoT) enabled framework for health monitoring. Comput. Netw. 101, 192–202 (2016). https://doi.org/10.1016/j.comnet.2016.01.009

    Article  Google Scholar 

  6. Chen, M., Wan, J., Gonzalez, S., Liao, X., Leung, V.C.M.: A survey of recent developments in home M2M networks. IEEE Commun. Surv. Tutor. 16(1), 98–114 (2014). https://doi.org/10.1109/SURV.2013.110113.00249

    Article  Google Scholar 

  7. Razzaque, M.A., Milojevic-Jevric, M., Palade, A., Cla, S.: Middleware for internet of things: a survey. IEEE Internet Things J. 3(1), 70–95 (2016). https://doi.org/10.1109/JIOT.2015.2498900

    Article  Google Scholar 

  8. Botta, A., De Donato, W., Persico, V., Pescapé, A.: Integration of cloud computing and internet of things: a survey. Futur. Gener. Comput. Syst. 56, 684–700 (2016). https://doi.org/10.1016/j.future.2015.09.021

    Article  Google Scholar 

  9. Stergiou, C., Psannis, K.E., Kim, B.G., Gupta, B.: Secure integration of IoT and cloud computing. Futur. Gener. Comput. Syst. 78, 964–975 (2018). https://doi.org/10.1016/j.future.2016.11.031. December 2017

  10. Ji, B., et al.: Survey on the internet of vehicles: network architectures and applications. IEEE Commun. Stand. Mag. 4(1), 34–41 (2020). https://doi.org/10.1109/MCOMSTD.001.1900053

    Article  Google Scholar 

  11. Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M.: Internet of Things (IoT): a vision, architectural elements, and future directions. Futur. Gener. Comput. Syst. 29(7), 1645–1660 (2013). https://doi.org/10.1016/j.future.2013.01.010

    Article  Google Scholar 

  12. Ullah, A., Mohd Nawi, N., Hayat Khan, M., Khan, H.A.: Rise of big data due to hybrid platform of cloud computing and Internet of Thing. J. Soft Comput. Data Min. 01(01), 46–54 (2020). https://doi.org/10.30880/jscdm.2020.01.01.006

  13. Kosmatos, E.A., Tselikas, N.D., Boucouvalas, A.C.: Integrating RFIDs and smart objects into a Unifiedinternet of Things architecture (Jan 2011). https://doi.org/10.4236/ait.2011.11002

  14. Khodkari, H., Maghrebi, S.G.: Necessity of the integration Internet of Things and cloud services with quality of service assurance approach. Bull. la Société R. des Sci. Liège 85, pp. 434–445 (2016)

    Google Scholar 

  15. Diène, B., Rodrigues, J.J.P.C., Diallo, O., Ndoye, E.H.M., Korotaev, V.V.: Data management techniques for Internet of Things. Mech. Syst. Signal Process. 138, 106564 (2020). https://doi.org/10.1016/J.YMSSP.2019.106564

    Article  Google Scholar 

  16. Atzori, L., Iera, A., Morabito, G.: Understanding the Internet of Things: definition, potentials, and societal role of a fast evolving paradigm. Ad Hoc Netw. 56, 122–140 (2017). https://doi.org/10.1016/j.adhoc.2016.12.004

    Article  Google Scholar 

  17. Mashal, I., Alsaryrah, O., Chung, T.Y., Yang, C.Z., Kuo, W.H., Agrawal, D.P.: Choices for interaction with things on Internet and underlying issues. Ad Hoc Netw. 28, 68–90 (2015). https://doi.org/10.1016/j.adhoc.2014.12.006

    Article  Google Scholar 

  18. Sonntag, M., Mehmann, J., Teuteberg, F.: Application of Industry 4.0 in the Automotive Sector (Sep 2021)

    Google Scholar 

  19. Diene, B., Diallo, O., Rodrigues, J.J.P.C., Ndoye, E.H.M., Teodorov, C.: Data management mechanisms for IoT: architecture, challenges and solutions. In: 2020 5th International Conference on Smart and Sustainable Technologies, SpliTech, 2020, pp. 1–6. https://doi.org/10.23919/SpliTech49282.2020.9243728

  20. Huacarpuma, R.C., De Sousa Junior, R.T., De Holanda, M.T., de O. Albuquerque, R., Villalba, L.J.G., Kim, T.H.: Distributed data service for data management in internet of things middleware. Sensors (Switzerland) 17(5) (2017). https://doi.org/10.3390/s17050977

  21. Celesti, A., et al.: Information management in IoT cloud-based tele-rehabilitation as a service for smart cities: comparison of NoSQL approaches. Meas. J. Int. Meas. Confed. 151, 107218 (2020). https://doi.org/10.1016/j.measurement.2019.107218

    Article  Google Scholar 

  22. Alreshidi, E.J., Arabia, S.: Introducing Fog Computing (FC) technology to Internet of Things (IoT) cloud-based anti-theft vehicles solutions. Int. J. Syst. Dyn. Appl. 11(3), 1–21 (2022). https://doi.org/10.4018/IJSDA.287114

    Article  Google Scholar 

  23. Mohammadi, M., Al-Fuqaha, A., Sorour, S., Guizani, M.: Deep learning for IoT big data and streaming analytics: a survey. IEEE Commun. Surv. Tutor. 20(4), 2923–2960 (2018). https://doi.org/10.1109/COMST.2018.2844341

    Article  Google Scholar 

  24. Ahad, M.A., Tripathi, G., Zafar, S., Doja, F.: IoT data management—security aspects of information linkage in IoT systems. In: Peng, S.-L., Pal, S., Huang, L. (eds.) Principles of Internet of Things (IoT) Ecosystem: Insight Paradigm, pp. 439–464. Springer International Publishing (2020)

    Google Scholar 

  25. Atlam, H.F.: Fog Computing and the Internet of Things: A Review, pp. 1–18 (2018). https://doi.org/10.3390/bdcc2020010

  26. Mahmud, R., Kotagiri, R., Buyya, R.: Fog computing: a taxonomy, survey and future directions. In: Di Martino, B., Li, K.-C., Yang, L.T., Esposito, A. (eds.) Internet of Everything: Algorithms, Methodologies, Technologies and Perspectives, pp. 103–130. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-5861-5_5

    Chapter  Google Scholar 

  27. Chiang, M., Zhang, T.: Fog and IoT: an overview of research opportunities. IEEE Internet Things J. 3(6), 854–864 (2016). https://doi.org/10.1109/JIOT.2016.2584538

    Article  Google Scholar 

  28. Wang, T., Liang, Y., Jia, W., Arif, M., Liu, A., Xie, M.: Coupling resource management based on fog computing in smart city systems. J. Netw. Comput. Appl. 135, 11–19 (2019). https://doi.org/10.1016/j.jnca.2019.02.021. September 2018

  29. Díaz, M., Martín, C., Rubio, B.: State-of-the-art, challenges, and open issues in the integration of Internet of things and cloud computing. J. Netw. Comput. Appl. 67, 99–117 (2016). https://doi.org/10.1016/j.jnca.2016.01.010

    Article  Google Scholar 

  30. Islam, T.: A Study on Big Data Management Strategy Using Fog Computing. Khulna University of Engineering & Technology (KUET), Khulna, Bangladesh (2018)

    Google Scholar 

  31. Borujeni, E.M., Rahbari, D., Nickray, M.: Fog-based energy-efficient routing protocol for wireless sensor networks. J. Supercomput. 74(12), 6831–6858 (2018). https://doi.org/10.1007/s11227-018-2514-3

    Article  Google Scholar 

  32. Yi, S., Li, C., Li, Q.: A survey of fog computing: concepts, applications and issues. In: Proceedings of the International Symposium on Mobile Ad Hoc Networking and Computing, vol. 2015-June, no. August, pp. 37–42 (2015). https://doi.org/10.1145/2757384.2757397

  33. Miani, R., Camargos, L., Zarpelão, B., Rosas, E., Pasquini, R. (eds.): GPC 2019. LNCS, vol. 11484. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19223-5

    Book  Google Scholar 

  34. Macaulay, J., Buckalew, L., Chung, G.: Internet of things in logistics. DHL Trend Res. 1(1), 1–27 (2015)

    Google Scholar 

  35. Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its role in the internet of things. In: MCC’12-Proceedings of the 1st ACM Mobile Cloud Computing Work, pp. 13–15 (2012). https://doi.org/10.1145/2342509.2342513

  36. Ribeiro, F.M., Bianchi, R.A.C., Prati, R.C., Kolehmainen, K., Soininen, J., Kamienski, C.A.: Data reduction based on machine learning algorithms for fog computing in IoT smart agriculture. Biosyst. Eng. (2022). https://doi.org/10.1016/j.biosystemseng.2021.12.021

  37. Bukhari, M.M., et al.: An Intelligent Proposed Model for Task Offloading in Fog-Cloud Collaboration Using Logistics Regression, vol. 2022 (2022)

    Google Scholar 

  38. Kamruzzaman, M.M., Yan, B., Sarker, N.I., Alruwaili, O., Wu, M., Alrashdi, I.: Blockchain and Fog Computing in IoT-Driven Healthcare Services for Smart Cities, vol. 2022 (2022)

    Google Scholar 

  39. Hewa, T., Member, S., Braeken, A.: Fog Computing and Blockchain based Security Service Architecture for 5G Industrial IoT enabled Cloud Manufacturing, vol. 3203, no. c, pp. 1–11 (2022). https://doi.org/10.1109/TII.2022.3140792

  40. Jain, S., Gupta, S.: Fog Computing in Enabling 5G-Driven Emerging Technologies for Development of Sustainable Smart City Infrastructures, vol. 0123456789. Springer US (2021)

    Google Scholar 

  41. Gill, S.S.: A manifesto for modern fog and edge computing: vision, new paradigms, opportunities, and future directions. In: Thirunavukarasu, R.N.R. (ed.) Operationalizing Multi-Cloud Environments: Technologies, Tools and Use Cases, no. 2022, pp. 237–253. Springer, Cham (2022)

    Google Scholar 

  42. Ahlmeyer, M., Chircu, A.M.: Securing the Internet of Things: a review. Issues Inf. Syst. 17(Iv), 21–28 (2016). http://www.iacis.org/iis/2016/4_iis_2016_21-28.pdf

  43. Yi, S., Li, C., Li, Q.: A survey of fog computing. In: Proceedings of the 2015 Workshop on Mobile Big Data-Mobidata ’15, no. June 2015, pp. 37–42 (2015). https://doi.org/10.1145/2757384.2757397

  44. Flavio Bonomi, Rodolfo Milito, Preethi Natarajan, and Jiang Zhu, “Fog Computing: A Platform for Internet of Things and Analytics,” in Big data and internet of things: A roadmap for smart environments, vol. 546, no. 2014, Cham: Springer, 2014, pp. 169–186

    Google Scholar 

  45. Pang, J., Huang, Y., Xie, Z., Han, Q., Cai, Z.: Realizing the heterogeneity: a self-organized federated learning framework for IoT. IEEE Internet Things J. 8(5), 3088–3098 (2021). https://doi.org/10.1109/JIOT.2020.3007662

    Article  Google Scholar 

  46. Oppitz, M., Tomsu, P.: Inventing the Cloud Century (2018)

    Google Scholar 

  47. Khodadadi, F., Calheiros, R.N., Buyya, R.: A data-centric framework for development and deployment of Internet of Things applications in clouds (2015). https://doi.org/10.1109/ISSNIP.2015.7106952

  48. Omar, H.A., Lu, N., Zhuang, W.: Wireless access technologies for vehicular network safety applications. IEEE Netw. 20(4), 22–26 (2016)

    Article  Google Scholar 

  49. Kuran, M.S., Tugcu, T.: A survey on emerging broadband wireless access technologies. Comput. Netw. 51(11), 3013–3046 (2007). https://doi.org/10.1016/j.comnet.2006.12.009

    Article  Google Scholar 

  50. de O. Cruz, B.: Impact of M2M Communications on Cellular Telecommunications Networks. Universidade de Aveiro (2013)

    Google Scholar 

  51. Cao, J., Yu, P., Ma, M., Member, S., Gao, W.: Fast Authentication and Data Transfer Scheme for Massive NB-IoT Devices in 3GPP 5G Network, vol. 6, no. 2, pp. 1561–1575 (2019)

    Google Scholar 

  52. Dawood, M.: Automotive Cognitive Access: Towards Customized Vehicular Communication System. University of Plymouth (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sherif Zahran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zahran, S., Elkadi, H., Helm, W. (2023). Fog of Things Framework to Handle Data Streaming Heterogeneity on Internet of Things. In: Hassanien, A.E., Snášel, V., Tang, M., Sung, TW., Chang, KC. (eds) Proceedings of the 8th International Conference on Advanced Intelligent Systems and Informatics 2022. AISI 2022. Lecture Notes on Data Engineering and Communications Technologies, vol 152. Springer, Cham. https://doi.org/10.1007/978-3-031-20601-6_53

Download citation

Publish with us

Policies and ethics