
ar
X

iv
:2

10
6.

07
30

0v
2

 [
cs

.G
T

]
 1

0
A

ug
 2

02
2

Maximin Shares Under Cardinality Constraints⋆

Halvard Hummel1[0000−0001−5691−8177] and Magnus Lie
Hetland1[0000−0003−4204−2017]

Norwegian University of Science and Technology, Trondheim, Norway,
halvard.hummel@ntnu.no, mlh@ntnu.no

Abstract. We study the problem of fair allocation of a set of indivisi-
ble items among agents with additive valuations, under cardinality con-
straints. In this setting, the items are partitioned into categories, each
with its own limit on the number of items it may contribute to any
bundle. We consider the fairness measure known as the maximin share

(MMS) guarantee, and propose a novel polynomial-time algorithm for
finding 1/2-approximate MMS allocations for goods—an improvement
from the previously best available guarantee of 11/30. For single-category
instances, we show that a modified variant of our algorithm is guaran-
teed to produce 2/3-approximate MMS allocations. Among various other
existence and non-existence results, we show that a (

√
n/(2

√
n − 1))-

approximate MMS allocation always exists for goods. For chores, we show
similar results as for goods, with a 2-approximate algorithm in the gen-
eral case and a 3/2-approximate algorithm for single-category instances.
We extend the notions and algorithms related to ordered and reduced

instances to work with cardinality constraints, and combine these with
bag filling style procedures to construct our algorithms.

Keywords: Constrained Fair Allocation, Indivisible Goods, Indivisible
Chores, Maximin Share, Matroid Constraints, Cardinality Constraints

1 Introduction

The problem of fair allocation is one that naturally occurs in many real-world
settings, for instance when an inheritance is to be divided or limited resources
are to be distributed. For a long time, the research in this area primarily focused
on the allocation of divisible items, but lately the interest in the more compu-
tationally challenging case of indivisible items has seen a surge. (Bouveret et al.
provide a somewhat recent overview [8]). For this variant of the problem, many
of the central fairness measures in the literature on divisible items, such as envy-
freeness and proportionality, are less useful. Instead, relaxed fairness measures,
such as the maximin share (MMS) guarantee [10], have been introduced, where
all agents receive at least as much as if they partitioned the items but were
the last to select a bundle. It is not always possible to find an MMS allocation
[12,22,26], but good approximations exist [15,16].

⋆ A preliminary version of this paper appeared at AAMAS 2022 as an extended ab-
stract [21].

http://arxiv.org/abs/2106.07300v2

2 H. Hummel and M. L. Hetland

Fairly allocating items in the real world often involves placing constraints on
the bundles allowed in an allocation. For example, consider the problem where
a popular physical conference or convention offers a variety of talks and panels
organized across several synchronized parallel tracks. Due to space constraints,
each talk is limited to some maximum number of participants, fewer than the
total number of participants at the conference. Consequently, there may be more
people interested in attending some talks than there are available seats. To mit-
igate this, the conference wants to fairly allocate the available seats, based on
participants’ preferences, so that no participant receives seats they cannot use,
i.e., multiple seats at the same talk or seats at multiple talks in the same time
slot. In order to solve this problem, we need to be able to express that some
items belong to the same category (seats at talks in the same time slot) and
that there is a limit on the number of items each category can contribute to any
bundle (in this case 1). This kind of constraints is called cardinality constraints
and was introduced by Biswas and Barman [6].

The conference example highlights a general type of problems for which car-
dinality constraints are useful, where each agent should not receive more items
of a certain type than she could possibly have use for. Another such problem
is the motivating example of Biswas and Barman [6]: A museum is to fairly al-
locate exhibits of different types to newly opened branches. To make sure that
each branch can handle its allocated exhibits, so that no exhibits go to waste,
an upper limit is placed on the number of exhibits each branch can be allocated
of each exhibit type. The constraints may also provide each agent with some
diversity in the type of items she receives. For example, with sufficiently small
limits in the museum example, each branch must receive a somewhat diverse
collection of exhibits.

Another application is making sure that items of certain types are guaranteed
to be roughly evenly distributed among the agents. This can be achieved by
setting the number of items each agent can receive from a given category close
to the number of items in this category divided by the number of agents. For
example, consider a situation where a set of donated items, including a limited
number of internet-capable devices, are to be fairly allocated to low-income
families. A single family can make use of many internet-capable devices. However,
the organization behind the allocation process may want to make sure that as
many families as possible have access to the internet. By placing all the internet-
capable devices in the same category and giving each family at most one item
from this category, the internet-capable devices will be distributed to as many
families as possible.

Biswas and Barman [6] showed that under cardinality constraints, with ad-
ditive valuations, it is always possible to find an allocation of goods where each
agent gets at least 1/3 of her MMS. This is achieved by a reduction to an uncon-
strained setting with submodular valuations, where the approximate allocation
is found using an algorithm described by Ghodsi et al. [16]. More recently, Li
and Vetta showed that 11/30-approximate MMS allocations are guaranteed to
exist under hereditary set system constraints [24]. This approximation guarantee

Maximin Shares Under Cardinality Constraints 3

is achievable in polynomial time for certain classes of set systems, including set
systems representing cardinality constraints.

1.1 Contributions

We develop a polynomial-time algorithm for finding 1/2-approximate MMS allo-
cations for goods under cardinality constraints, improving on the 1/3 and 11/30
guarantees of Biswas and Barman [6] and Li and Vetta [24], which are, to our
knowledge, the best guarantees previously available. To construct the algorithm,
we extend the notions and algorithms related to ordered and reduced instances
to work with cardinality constraints, and combine these with a bag-filling style
algorithm. Combining this algorithm with a lone-divider style [1] preprocessing
step, we show that (

√
n/(2

√
n− 1))-approximate MMS allocations always exist

for goods—a large improvement for few agents. The preprocessing step unfortu-
nately relies on finding MMS-partitions, an NP-hard problem [29]. However, the
1/2-approximate MMS algorithm is able to find both (n/(2n− 1))-approximate
MMS allocations and 1-out-of-(2n− 1) MMS allocations by changing a constant.

For chores, we show that a similar approach finds 2-approximate (or, more
precisely, ((2n− 1)/n)-approximate) MMS allocations in polynomial time. This
is, to our knowledge, the first MMS result for chore allocation under cardinality
constraints.

We also examine a special case of cardinality constraints, in which all the
items belong to the same category. This case is equivalent to placing a restric-
tion on the number of items in each bundle, or equivalently restricting bundles
to independent sets of a uniform matroid. This is a setting of interest in itself,
especially for chores, where it can be useful to make sure that no agent is stuck
with a much larger number of chores than anyone else. By modifying our general
algorithms, we show that in this special case, (2/3)-approximate MMS alloca-
tions for goods and (3/2)-approximate MMS allocations for chores can be found
in polynomial time.

1.2 Related Work

Several other constraint types have been examined in the recent literature. (See
Suksompong’s recent survey for a detailed overview [28].) One such constraint
is that all agents must receive exactly the same number of items [13], a more
restrictive version of our single-category instances. Another, studied by Bouveret
et al., uses an underlying graph to represent connectivity between the items and
requires each bundle to form a connected component [7]. Such connectivity con-
straints have since been explored in many papers [e.g., 5,19,25]. A variation is
the allocation of conflicting items, where each bundle must be an independent
set in the graph [11,20]. There is some overlap between this scenario and cardi-
nality constraints with threshold 1 [cf. 20], but neither is a generalization of the
other. Cardinality constraints have recently been studied by Shoshan et al., who
considered the problem of finding allocations that are both Pareto optimal and
EF1 for instances with two agents [27].

4 H. Hummel and M. L. Hetland

Matroids have been used to constrain allocations in several different ways [18].
The cardinality constraints placed on a single bundle may in fact be represented
by a partition matroid or for single-category instances a uniform matroid. The
1/2-approximate MMS algorithm of Gourvès and Monnot [17] applies to the
superficially similar problem where a single matroid constraint is placed on the
union of all bundles. As pointed out by Biswas and Barman [6], this algorithm
cannot be applied to the cardinality constraint scenario.

2 Preliminaries

For a given instance, I = 〈N,M, V 〉, of the fair allocation problem, let N =
{1, 2, . . . , n} denote a set of agents, M = {1, 2, . . . ,m}, a set of items, and V =
〈v1, v2, . . . , vn〉, the valuation profile, i.e., the collection of the agents’ valuation
functions vi : 2

m → R over the subsets S ⊆ M . For simplicity, the valuation
of a single item vi({j}) will be denoted by both vi(j) and vij . We assume that
the valuations are additive, i.e., vi(S) =

∑

j∈S vij . We wish to find an allocation
A = 〈A1, A2, . . . , An〉 that forms a partition of M into n possibly empty subsets,
or bundles, one for each agent. We say that an instance I consists of goods
if vij ≥ 0 for all i ∈ N, j ∈ M , and chores if vij ≤ 0 for all i ∈ N, j ∈ M .
We consider both instances consisting of goods and ones consisting of chores.
However, we do not consider instances consisting of a mix of goods and chores.
For simplicity, we will throughout the paper assume that all instances consist of
goods, except for in Section 7, which covers our results on chores.

For the fair allocation problem under cardinality constraints, an instance is
given by I = 〈N,M, V,C〉, where C is a set of ℓ pairs 〈Ch, kh〉 of categories Ch

and corresponding thresholds kh. The categories constitute a partition of the
items, M . An allocation A is feasible for the instance if no agent receives more
than kh items from any category Ch, i.e., if |Ai ∩ Ch| ≤ kh for all i ∈ N, h ∈
{1, . . . , ℓ}. We let FI denote the set of all feasible allocations for I, with the
subscript omitted if it is clear from context. To guarantee that there is at least
one feasible allocation, i.e., F 6= ∅, no category may contain more items than we
can possibly distribute, i.e., we require that |Ch| ≤ nkh for all h ∈ {1, . . . , ℓ}1.

We are concerned with the fairness criterion known as the maximin share
guarantee [10]. The maximin share (MMS) of an agent is the value of the most
preferred bundle the agent can guarantee herself if she were to divide the items
into feasible bundles and then choose her own bundle last. More formally:2

Definition 1. Let I = 〈N,M, V,C〉 be an instance of the fair allocation problem
under cardinality constraint. The maximin share of an agent i for the instance
I is given by

µI
i = max

A∈FI

min
Aj∈A

vi(Aj) ,

1 Instances with more than nkh items in category Ch can be handled by ordering the
instance (see Section 3) and ignoring the worst items in the category.

2 The definition is equivalent for chores.

Maximin Shares Under Cardinality Constraints 5

where FI is the set of feasible allocations for I. If I is obvious from context, we
write simply µi.

An allocation is said to satisfy the MMS guarantee, or to be an MMS allocation,
if each agent gets a bundle valued at least as much as the agent’s MMS, i.e.,
vi(Ai) ≥ µi for all agents i. We concern ourselves with allocations that satisfy
this guarantee approximately, where an allocation is said to be an α-approximate
MMS allocation for some α > 0 if vi(Ai) ≥ αµi for all agents i. An allocation A
is said to be an MMS partition of an agent i, if vi(Aj) ≥ µi for all Aj ∈ A. By
definition, at least one MMS partition exists for any agent in any instance. As
MMS allocations are not guaranteed to exist [12,22,26], there exists a general-
ized and relaxed version of MMS, called the l-out-of-d MMS [3].3 This fairness
criterion works like MMS, except that the agent is to partition the goods into d
feasible bundles maximizing the combined value of the l least valuable bundles
in the partition. Our algorithms require some knowledge about the value of µi in
order to determine when a bundle is worth at least αµi to an agent i. Finding the
MMS of an agent is known to be NP-hard for the unconstrained fair allocation
problem [29]. Since unconstrained fair allocation is simply the special case of
ℓ = 1 and k1 = m, finding an agent’s MMS is at least as hard under cardinality
constraints.4 In order to provide polynomial-time algorithms, we exploit the fact
that µi cannot be larger than the average bundle value, i.e., µi ≤ vi(M)/n, and
we can scale all values so that vi(M) = n, so that µi ≤ 1, as shown in the fol-
lowing theorems. Due to space constraints, their proofs have been omitted, but
can be found in the appendix along with all other omitted proofs. The proofs
from ordinary fair allocation for the two succeeding theorems do in fact extend
to cardinality constraints without any modification [see, e.g., 2,14]. We assume,
without loss of generality, that vi(M) > 0 for each agent i.5

Theorem 1 (Scale invariance). If A is an MMS allocation for the instance
I = 〈N,M, V,C〉, then A is also an MMS allocation for I ′ = 〈N,M, V ′, C〉,
where v′i(S) = aivi(S), ai > 0, for some agent i.

Theorem 2 (Normalization). Let I = 〈N,M, V,C〉 be an instance of the
fair allocation problem of under cardinality constraints and vi(M) = |N | for
some agent i. Then µi ≤ 1.

Once valuations have been normalized, constructing an α-approximate MMS
allocation reduces to providing each agent with a bundle worth at least α.

3 We use l instead of the usual ℓ to avoid conflicting use of symbols.
4 In the unconstrained setting, a PTAS exists for finding the MMS of each individ-
ual agent [29], but this PTAS does not extend to fair allocation under cardinality
constraints and there does not, to our knowledge, exist a PTAS for this problem.

5 If vi(M) = 0, normalization does not work. However, since this implies µi = 0,
Corollary 1 can be used to eliminate agent i from the instance.

6 H. Hummel and M. L. Hetland

3 Ordered Instances

In the unconstrained setting, Bouveret and Lemâıtre showed that each instance
can be reduced to an instance where all agents have the same preference order
over all goods [9]. That is, in such an instance there exists an ordering of the
goods such that when j < k, we have vij ≥ vik for all agents i. While Bouveret
and Lemâıtre introduced these as instances that satisfy same-order preferences,
we will refer to them as ordered instances, as is the norm for MMS-approximation
algorithms [4,14].

The reduction works as follows. For each agent, sort the good values and re-
assign these to the goods, which are listed in some predetermined order, common
to all agents. Allocations for the reduced instance are converted into allocations
for the original instance, without diminishing their value, by going through the
goods in the predetermined order; the agent who originally received a given good
instead chooses her highest-valued remaining good.

Since only the permutation of value assignments to goods changes, the reduc-
tion does not change the MMS of each agent. Thus, any α-approximate MMS
allocation in the ordered instance will also be α-approximate in the original in-
stance. Ordered instances are therefore at least as hard as any other instances,
and it suffices to show that an algorithm produces an α-approximate MMS al-
location for ordered instances.

The standard definition of an ordered instance does not work under cardinal-
ity constraints, due to an inherent loss of information about which goods belong
to which category. Without this information, one is not guaranteed to be able
to produce a feasible α-approximate MMS allocation when converting back to
the original instance. We generalize the definition to fair allocation under cardi-
nality constraints. In the special case where ℓ = 1, this definition and the later
conversion algorithms are equivalent to those of Bouveret and Lemâıtre.

Definition 2. An instance I = 〈N,M, V,C〉 of the fair allocation problem un-
der cardinality constraints is called an ordered instance if each category Ch =
{c1, c2, · · · , c|Ch|} is ordered such that for all agents i, vi(c1) ≥ vi(c2) ≥ · · · ≥
vi(c|Ch|).

With the generalized definition, the reduction of MMS-approximation to ordered
instances can be extended to cardinality constraints by applying the algorithms
of Bouveret and Lemâıtre to each category Ch individually, as shown in algo-
rithms 1 and 2.

Lemma 1. Let I = 〈N,M, V,C〉 be an instance of the fair allocation problem
under cardinality constraints, and A′ a feasible α-approximate MMS allocation
for the ordered instance I ′ produced by Algorithm 1. Then the allocation produced
by conversion of A′ with Algorithm 2 is a feasible α-approximate MMS allocation
for I.

Repeating the ordering and deordering procedure for each category does not
affect the polynomial nature of the procedures. As a result, the reduction to
ordered instances holds.

Maximin Shares Under Cardinality Constraints 7

Algorithm 1 Order instance

Input: Instance I = 〈N,M, V,C〉
Output: Ordered I ′ = 〈N,M, V ′, C〉
1 for (Ch, kh) ∈ C

2 for j = 1 to |Ch|
3 for i ∈ N

4 v′i(cj) = i’s jth highest

5 value in Ch

6 return 〈N,M, V ′, C〉

Algorithm 2 Recover solution

Input: Instance I = 〈N,M, V,C〉 and al-
location A′ for corresponding I ′

Output: Allocation A for I

1 A = 〈∅, . . . , ∅〉
2 for (Ch, kh) ∈ C

3 for j = 1 to |Ch|
4 i = agent for which cj ∈ A′

i

5 j∗ = i’s preferred item in Ch

6 Ai = Ai ∪ {j∗}
7 Ch = Ch \ {j∗}
8 return A

Theorem 3. For fair allocation under cardinality constraints, MMS-approx-
imation reduces to MMS-approximation of ordered instances in polynomial time.

Proof. By Lemma 1 it is sufficient to find an α-approximate MMS allocation for
the reduced instance produced by Algorithm 1. Since both algorithms 1 and 2 are
polynomial in the number of agents and goods for each category, the reduction
is polynomial in the number of agents, goods and categories.

4 Reduced Instances

High-valued goods are generally harder to handle than low-valued goods in
MMS-approximation. Low-valued goods can easily be distributed across bun-
dles in an approximately even manner and to a certain extent in a way that
makes up for an uneven value distribution due to the high-valued goods. High-
valued goods, on the other hand, allow only for a rough and usually uneven
distribution. In order to simplify the problem instances, we wish to minimize
both the number of high-valued goods and the maximum value of a good.

If we remove an agent i and a bundle B ⊆ M from an instance, the result is
called a reduced instance. If the bundle’s value is sufficiently high (vi(B) ≥ αµi)
and the MMS of the remaining agents are at least as high after the removal,
this is called a valid reduction [15], a concept used in many MMS approximation
algorithms for the unconstrained fair allocation problem [e.g., 14,23,16].6 With
a valid reduction we can both guarantee agent i a bundle with a value of at least
αµi and reduce the original instance to a smaller problem instance.

Given the above definition, a valid reduction could leave an instance without
any feasible (complete) allocations, as there may be more goods left in a category
than can be allocated to the remaining agents. We require that a valid reduction
leaves the reduced instance with at least one feasible allocation.
6 The term reduction here refers to data reduction, as the term is used in parameterized
algorithm design, rather than to the problem transformations of complexity theory.

8 H. Hummel and M. L. Hetland

Definition 3. Let I = 〈N,M, V,C〉 be an instance of the fair allocation problem
under cardinality constraints, B a feasible bundle, i an agent, and I ′ = 〈N \
{i},M \ B, V ′, C′〉, where V ′ and C′ are equivalent to V and C, with agent i
and the items in B removed. If vi(B) ≥ αµI

i , FI′ 6= ∅ and µI′

i′ ≥ µI
i′ for all

i′ ∈ N \ {i}, then allocating B to i is called a valid reduction.

Most of the valid reductions used in unconstrained fair allocation are based on
the pigeonhole principle. If you can find a set of goods that are worth at least
αµi to some agent i and show that all agents must have an MMS partition with
a bundle containing an equivalent number of equally or higher valued goods,
then you have a valid reduction. The latter part is exactly what the pigeonhole
principle promises if we, e.g., look at the bundle {n, n + 1} in unconstrained
fair allocation. Under cardinality constraints, we can also utilize the pigeonhole
principle to find valid reductions. The usefulness is, somewhat reduced, due to
both a lack of a common preference ordering across categories and the restric-
tiveness of the category thresholds. We can, however, show a general result for
valid reductions based on the pigeonhole principle.

Theorem 4. Let I = 〈N,M, V,C〉 be an ordered instance of the fair allocation
problem under cardinality constraints, and let B = {j1, . . . , jk} be a feasible bun-
dle of k ≥ 1 goods such that vi(B) ≥ αµi for an agent i ∈ N and α > 0. Let
each agent i′ ∈ N \ {i} have a bundle Bi′ in one of her MMS partitions such that
there is an injective map f : B → Bi′ where, for each j ∈ B, j and f(j) belong to
the same category, and vi′(f(j)) ≥ vi′(j). Let B

′ be the bundle consisting of the
goods in B and for each Ch ∈ C the max(0, |Ch \B| − (|N | − 1)kh) lowest-valued
goods in Ch \B. Then, B′ and i form a valid reduction for I and α.

Proof sketch (full proof in appendix). For any agent i′ 6= i, the injective map
and the construction of B′ guarantees that there is a way to modify the MMS
partition of i′ through trades and transfers of goods, such that one bundle is
turned into B′ and the value of any other bundle is at least as high as in the
MMS partition originally. The construction of B′ also guarantees a valid instance
after the reduction. Since vi(B

′) ≥ vi(B) ≥ αµi, B
′ and i form a valid reduction

for I and α. ⊓⊔

We can easily use the general result of Theorem 4 to construct similar valid
reductions to those in the unconstrained setting. Any good i valued at more
than αµi for some agent i can be used for a reduction, as the identity function
f : {j} → {j} satisfies the criteria of Theorem 4. Similarly, by the pigeonhole
principle, we can create valid reductions with the n-th and (n + 1)-th most
valuable goods in a single category.

Corollary 1. Let I = 〈N,M, V,C〉 be an ordered instance of the fair allocation
problem under cardinality constraints, where there is an agent i ∈ N and a good
j ∈ M such that vij ≥ αµi for α > 0. Then, a valid reduction can be constructed
from the bundle B = {j}.

Maximin Shares Under Cardinality Constraints 9

Corollary 2. Let I = 〈N,M, V,C〉 be an ordered instance of the fair allocation
problem under cardinality constraints, with a category Ch = 〈c1, c2, . . . , c|Ch|〉,
|Ch| ≥ |N |+ 1, where vi({c|N |, c|N |+1) ≥ αµi for some i ∈ N and α > 0. Then,
a valid reduction can be constructed from the bundle B = {c|N |, c|N |+1}.

It can be tempting to think that we can employ the same valid reductions within
a single category as is possible in the unconstrained setting. This is not the case,
even when the instance only has a single category and three agents with identical
valuations. For example, in the unconstrained setting, any bundle B consisting
of two goods, with vi(B) ≥ αµi for an agent i ∈ N and vi′(B) ≤ µi′ for all other
agents i′ ∈ N \ {i}, can be used for a valid reduction. This, is not the case under
cardinality constraints, even when removing B and i produces a feasible instance
without removing any other goods.7

5 MMS Results under Cardinality Constraints

The reductions of theorems 2 and 3 and Corollary 1, which can be performed
in polynomial-time, let us restrict finding α-approximate MMS allocations to
normalized ordered instances where each good is worth less than α, without loss
of generality. For such instances, Algorithm 3 can be used to find (|N |/(2|N | −
1))-approximate MMS allocations, which for any number of agents is at least a
1/2-approximate MMS allocation.

The algorithm works in a somewhat similar manner to bag filling algorithms
for unconstrained fair allocation [see, e.g., 14,16], i.e., by incrementally adding
goods to (and, in our case, removing goods from) a “bag,” or partial bundle, B,
until vi(B) ≥ α for some agent i. The major difference is the initial content of
the bundle. To make sure that a complete feasible allocation is found, the bundle
initially contains the ⌊|Ch|/n⌋ least-valuable remaining goods in each category
Ch (denoted by CL

h). This guarantees that the required number of goods is given
away from each category. The value of the bundle is then incrementally increased,
so as to not increase the value by more than α in each step, by exchanging
one of the goods in B from some CL

h , for one of the ⌊|Ch|/n⌋ most valuable
remaining goods in the same category (denoted CH

h). To mitigate possible effects
of rounding |Ch|/n, one additional good may be added from any category where
|Ch|/n > ⌊|Ch|/n⌋.

Before proving that the algorithm does indeed find a 1/2-approximate MMS
allocation, we first need a lower bound on the value of the remaining goods at
any point during the execution of the algorithm.

Lemma 2. Let I = 〈N,M, V,C〉 be a normalized ordered instance of the fair
allocation problem under cardinality constraints where all goods are worth less
than α for some α ≥ 1/2. Let n denote the number of remaining agents at any
given point during the execution of Algorithm 3. Then each remaining agent
assigns a value of at least |N | − 2(|N | − n)α to the set of unallocated goods.

7 See Example 1 in the appendix for a simple instance where this fails.

10 H. Hummel and M. L. Hetland

Algorithm 3 Find a α-MMS solution to ordered instance

Input: A normalized ordered instance I = 〈N,M, V,C〉 with all vij < α

Output: Allocation A consisting of each bundle B allocated

1 while there is more than one agent left

2 B = ∪ℓ
h=1C

L
h

3 while vi(B) < α for all agents i

4 if B ∩ CL
h 6= ∅ for some Ch

5 j = any element of CH
h \B

6 j′ = any element of B ∩ CL
h

7 B = (B \ {j′}) ∪ {j}
8 else j = any c⌈|Ch|/n⌉ not in B

9 B = B ∪ {j}
10 allocate B to some agent i with vi(B) ≥ α

11 remove B and i from I and update n, and CH
h and CL

h for all h

12 allocate the remaining goods to the last agent

Proof. Because the instance is normalized, the lemma holds at the start of the
algorithm. Assume that there are n remaining agents at the start of an iteration,
and for each remaining agent i, vi(M) ≥ |N | − 2(|N | − n)α. Let i′ be the agent
receiving B in the iteration. For any remaining agent i 6= i′, we wish to show that
vi(M \B) ≥ |N |− 2(|N |−n+1)α. Because the valuations are additive, the only
way this cannot hold is if vi(B) > 2α. Since any change to B after the initial
creation adds a good to B or exchanges a good in B for another, any individual
change cannot increase the value of B by more than α. Thus, because the loop
at line 3 terminates as soon as vi(B) ≥ α, the only way we may have vi(B) > 2α
is if it holds initially, i.e., B =

⋃ℓ
h=1C

L
h and vi(

⋃ℓ
h=1C

L
h) > 2α. However, by

definition vi(C
L
h) ≤ vi(Ch)/n which implies vi(B) ≤ vi(M)/n. Consequently,

vi(M \B) ≥ (n− 1)vi(B) ≥ (n− 1)2α ≥ (n− 1) ≥ |N | − 2(|N | − n+ 1)α. ⊓⊔

With Lemma 2 we have a sufficient lower guarantee for the remaining value. We
are now ready to show the guarantees of the algorithm.

Lemma 3. Given a normalized ordered instance I = 〈N,M, V,C〉 of the fair al-
location problem under cardinality constraints where all goods are worth less than
α = |N |/(2|N | − 1), Algorithm 3 finds a feasible (|N |/(2|N | − 1))-approximate
MMS allocation in polynomial time in the number of agents and goods.

Proof. When allocating the remaining goods to the last agent, Lemma 2 guar-
antees that the goods are worth at least α, if |N | − 2(|N | − 1)α ≥ α, which holds
for α ≤ |N |/(2|N | − 1). Additionally, as long as B reaches a value of α before
running out of improvement operations, any other agent is also guaranteed to
receive a bundle they value at no less than α. Since B contains the ⌈Ch/n⌉ most
valuable goods in each category Ch when the algorithm runs out of operations,
B reaches a value of at least 1/n of the remaining value. We thus only need to

Maximin Shares Under Cardinality Constraints 11

show that the remaining value is always at least nα for any remaining agent.
Lemma 2 guarantees that the remaining value is at least |N |−2(|N |−n)α. Since,
this value is at least α for n = |N | − 1, the value is at least 2(n− 1)α+ α ≥ nα
for any other n, and we are guaranteed that the value of B reaches at least α in
any iteration. Since µi ≤ 1 for i ∈ N , each agent i receives at least αµi value.

It remains to show that any bundle allocated is feasible. As long as |Ch| ≤
nkh, it holds that ⌈|Ch|/n⌉ ≤ kh and any bundle allocated is feasible. Obviously,
|Ch| ≤ nkh holds when n = |N |, as all instances are assumed to have at least
one feasible complete allocation. Assume that |Ch| ≤ nkh holds at the start
of an iteration. The bundle B starts with ⌊|Ch|/n⌋ ≥ |Ch| − (n − 1)kh of the
goods in Ch and no good is removed without adding another from the same Ch.
Thus, |Ch \B| ≤ (n− 1)kh and the condition holds for n− 1 after allocating B.
Consequently, each allocated bundle, including the bundle allocated to the last
agent, is feasible.

In each iteration of the algorithm, goods are added to and exchanged through
a set of operations. As no good is added back into B after being removed, the
number of operations in each iteration is polynomial in the number of agents
and goods. Since there are |N | − 1 iterations, the running time of the algorithm
is also polynomial in the number of agents and goods. ⊓⊔

We have now showed everything needed to show that 1/2-approximate MMS
allocations exist and can be found in polynomial time.

Theorem 5. For an instance I = 〈N,M, V,C〉 of the fair allocation problem
under cardinality constraints, a (|N |/(2|N | − 1))-approximate MMS allocation
always exists and can be found in polynomial time.

Proof. By theorems 2 and 3 and Corollary 1, any instance I can in polynomial
time be converted to one, I ′, that Algorithm 3 accepts. Since I ′ has no more
agents than I, Lemma 3 guarantees that for I ′ an at least (|N |/(2|N | − 1))-
approximate MMS allocation is found in polynomial time by Algorithm 3. The
allocation for I ′ can then be turned back to one for I in polynomial time. ⊓⊔

Algorithm 3 is guaranteed to find α-approximate MMS allocations for all possi-
ble problem instances when α ≤ |N |/(2|N |−1). However, there exist many types
of problem instances for which the algorithm will find a feasible α-approximate
MMS allocation when a larger α is used. For example, for an instance where
vij ≤ µi/4 for all i ∈ N , j ∈ M , the algorithm will always find a feasible α-
approximate MMS allocation when α = 3/4, because then each bundle allocated
in the bag filling step is worth no more than 1, unless the bundle is the start-
ing bag. Generally, increasing α might in the worst case result in the remaining
value decreasing to the point where vi(B) < α for any remaining agent i after all
improvements have been performed on B. However, for many problem instances,
the average value of each allocated bundle is quite a bit smaller than 2α for any
remaining agent i. Thus, even for larger values of α, the algorithm can often
find a α-approximate MMS allocation. While it is hard to determine the largest
α that works for a certain problem instance through calculation, it is possible

12 H. Hummel and M. L. Hetland

to simply check if the algorithm finishes for various values of α. Preliminary
experiments suggest that trying the algorithm for a limited number of different
values of α often provides much better approximations.

Since Theorem 5 in fact guarantees each agent a bundle of value at least
(|N |/(2|N | − 1))vi(M), it directly allows us to show that a 1-out-of-(2|N | − 1)
MMS allocation always exists and can be found in polynomial time.

Corollary 3. For an instance I = 〈N,M, V,C〉 of the fair allocation problem
under cardinality constrains, a 1-out-of-(2|N | − 1) MMS allocation always exists
and can be found in polynomial time.

Proof. In a similar fashion to Theorem 2, the 1-out-of-(2|N | − 1) MMS of any
agent can at most be vi(M)/(2|N | − 1). The proof of Lemma 3 shows that
Algorithm 3 gives each agent a bundle valued at least |N |/(2|N | − 1) when
vi(M) = |N |, which is at least the 1-out-of-(2|N | − 1) MMS of any agent. ⊓⊔
It is possible to improve the existence guarantee for MMS approximation by
using bag filling in combination with the lone-divider technique of Aigner-Horev
and Segal-Halevi [1]. In the lone-divider technique, agent i, one of the remaining
agents, is chosen to partition the remaining goods into bundles that all have a
value of at least αµi to i. Then, a non-empty subset of the bundles is allocated
to some subset of the remaining agents, through an envy-free matching which is
guaranteed to exist. An envy-free matching is here a matching where each agent
matched to a bundle values it at no less than αµi and all non-matched remaining
agents value the matched bundles at less than αµi. Aigner-Horev and Segal-
Halevi showed that an envy-free matching always exists [1]. The process is then
repeated until no agent remains. In order to improve the existence guarantee, we
first use the lone-divider technique with a partition scheme that only works when
a large number of agents remain. When the partition scheme no longer works,
the ratio of remaining value to remaining agents has increased, since α < 1 and
any bundle already allocated is worth less than αµi to any remaining agent. The
increased ratio allows Algorithm 3 to be able to provide each remaining agent
with a greater value than before the allocations. Unfortunately, the existence
result is only of an existential nature, as the partition scheme depends on finding
arbitrary MMS-partitions, which is known to be NP-hard [29].

Theorem 6. For an instance I = 〈N,M, V,C〉 of the fair allocation problem
under cardinality constraints, a (

√

|N |/(2
√

|N | − 1))-approximate MMS alloca-
tion always exists.

Proof sketch (full proof in appendix). When only a few bundles have been given
away, any MMS-partition of I for any remaining agent contains at least as many
bundles with a remaining value of αµi or higher, as there are remaining agents.
The goods in the other bundles in the MMS-partition can then arbitrarily be
moved to one of these bundles with remaining value αµi. On the other hand,
since α < 1, as the number of allocated bundles increases, each remaining agent’s
proportional share of the value of the remaining goods increases. Thus, Algo-
rithm 3 will be able to guarantee a partition with higher and higher minimum

Maximin Shares Under Cardinality Constraints 13

bundle value. The value of α must then be set so that in any situation, one of
the two methods works. It can be shown that

√

|N |/(2
√

|N | − 1) is the largest
value of α that works. ⊓⊔

6 Uniform Matroid Constraints

In this section we deal with the special case of cardinality constraints in which
there is only a single category, i.e., ℓ = 1. In this case, the cardinality constraints
are equivalent to simply limiting the maximum number of goods in a bundle, or,
equivalently, restricting bundles to be independent sets of a uniform matroid.
Throughout the section we will assume that for any ordered instance, which
provides a total ordering of goods, the goods are numbered in a way such that
vi(j) ≥ vi(j

′) for all i ∈ N and j, j′ ∈ M with j < j′. In other words, the goods
are numbered from most preferred (1) to least preferred (|M |). Our main result
(Theorem 7) for single-category instances is the existence of (2/3)-approximate
MMS allocations and the ability to find these in polynomial time.

Theorem 7. For an instance I = 〈N,M, V, 〈(C1, k1)〉〉 of the fair allocation
problem under cardinality constraints, a (2/3)-approximate MMS allocation al-
ways exists and can be found in polynomial time.

In order to prove Theorem 7 we need the following observation about the value
of certain subsets of goods.

Lemma 4. Let I = 〈N,M, V, 〈(C1, k1)〉〉 be an ordered instance of the fair al-
location problem under cardinality constraints. For any r ∈ {1, 2, . . . , |N |}, let
Br = {r, r + 1, . . . ,min(|M |, r + k1(|N | − r + 1) − 1)}. Then, for any i ∈ N ,
vi(Br) ≥ (|N | − r + 1)µi.

Lemma 4 provides two useful properties. Most importantly, it can be used to
show that the bundles created during a bag-filling style algorithm (Algorithm 4)
will be worth at least µi before running out of improvements. At the same time,
it provides a direct, polynomial way to improve our estimate of µi (in addition to
Theorem 2) to the required accuracy for the algorithm. Lemma 4 can be used to
show that 2/3-MMS allocations can be found in polynomial time for a restricted
class of instances using Algorithm 4.

Lemma 5. For an instance I of the fair allocation problem under cardinality
constraints satisfying the requirements of Algorithm 4, the algorithm finds a 2/3-
approximate MMS allocation in polynomial time.

Proof sketch (full proof in appendix). The correctness of Algorithm 4 follows from
two observations about the construction of B′

j. First, the construction guarantees
that B′

j is feasible and contains at least the required number of goods so that
after allocating B′

j , there are at most k1(j− 1) goods left. Second, Lemma 4, the
incremental improvements of B′

j and the distribution of the |N | most valuable

14 H. Hummel and M. L. Hetland

Algorithm 4 Find (2/3)-MMS solution for single-category instance

Input: An ordered instance I = 〈N,M, V, 〈C1, k1〉〉 with |M | > |N |, µi ≤ 1, vi(Br) ≥
|N | − r + 1 (from Lemma 4), vi(1) < 2/3, and vi(|N | + 1) < 1/3 for every i ∈ N ,
r ∈ {1, 2, . . . , |N |}
Output: Allocation A consisting of each bundle B′

j allocated

1 let B′
1 = {1}, B′

2 = {2}, . . . , B′
|N| = {|N |}

2 for j = |N | down to 1

3 if |M | > k1(j − 1) + 1

4 add the |M | − k1(j − 1)− 1 least-valuable goods in

M \ (B′
1 ∪B′

2 ∪ · · · ∪ B′
j) to B′

j

5 while vi(B
′
j) ≤ 2/3 for all i ∈ N and |B′

j | < k1

6 add the least-valuable good in M \ (B′
1 ∪ B′

2 ∪ · · · ∪ B′
j) to B′

j

7 while vi(B
′
j) ≤ 2/3 for all i ∈ N

8 exchange the least valuable g ∈ B′
j for the least valuable

g′ ∈ M \ (B′
1 ∪B′

2 ∪ · · · ∪B′
j) with g′ < g

9 find i ∈ N such that vi(B
′
j) ≥ 2/3

10 allocate B′
j to i and set N = N \ {i}, M = M \B′

j .

goods into distinct bundles, together guarantee that when j = r, the value of
the min(k1, |Br ∩M |) most valuable remaining goods in Br is at least 1 for each
remaining agent. Thus, B′

j will always be able to reach a value of at least 2/3. ⊓⊔

Proof sketch for Theorem 7 (full proof in appendix). The proof boils down
to showing that for any instance I, we can either trivially, if |M | ≤ |N |, find
a (2/3)-approximate MMS allocation through valid reduction, or we can turn
I into an instance accepted by Algorithm 4. The latter is achieved through
repeated rescaling based on Theorem 2 and Lemma 4, together with applying
all possible valid reductions based on Corollaries 1 and 2. ⊓⊔

In addition to existence of (2/3)-approximateMMS allocations, certain restricted
classes of single-category instances allow for better approximation or existence
guarantees. Specifically, when the number of goods is not much larger than the
category threshold, approximation results for unconstrained fair allocation apply
under cardinality constraints.

Lemma 6. For an instance I = 〈N,M, V, 〈(C1, k1)〉〉 of the fair allocation prob-
lem under cardinality constraints, with |M | < |N |+ k1, MMS-approximation re-
duces to MMS-approximation for unconstrained fair allocation.

As a result of Lemma 6, the following follows directly from the results of Garg
and Taki on MMS approximation in unconstrained fair allocation [15].

Corollary 4. For an instance I = 〈N,M, V, 〈(C1, k1)〉〉 of the fair allocation
problem under cardinality constraints, with |M | < |N |+ k1, a (3/4 + 1/(12n))-

Maximin Shares Under Cardinality Constraints 15

approximate MMS allocation always exists and a (3/4)-approximate MMS allo-
cation can be found in polynomial time.

When the threshold is small enough, it is possible to show that MMS allocations
always exist. For larger thresholds, on the other hand, it is possible to create
instances for which there is no MMS allocation.

Lemma 7. Let I = 〈N,M, V, 〈(C1, k1)〉〉 be an instance of the fair allocation
problem under cardinality constraints. If k1 ≤ 2, an MMS allocation always ex-
ists. If k1 ≥ 4, an MMS allocation is not guaranteed to exist.

7 Fair Allocation of Chores

So far we have only considered instances where the items are goods. In this
section we instead consider instances where the items are chores. As our results
on chores are similar in scope and technique to our results on goods, the results
will only be covered briefly with all proofs given in the appendix. We assume,
without loss of generality, that vi(M) < 0.8 Then concepts of scale invariance
and normalization transfer directly to chores.

Theorem 8 (Scale invariance). If A is an MMS allocation for the instance
I = 〈N,M, V,C〉 of the fair allocation of chores problem under cardinality con-
straints, then A is also an MMS allocation of I ′ = 〈N,M, V ′, C〉, where v′i(S) =
aivi(S), ai > 0, for some agent i.

Theorem 9 (Normalization). Let I = 〈N,M, V,C〉 be an instance of the fair
allocation of chores problem under cardinality constraints and vi(M) = −|N | for
some agent i. Then µi ≤ −1.

Further, the reduction to ordered instances works for chores as well. As with
goods, reassigning the valuations of the chores does not change the MMS of any
agent. The earlier conversion algorithm for an allocation of the ordered instance
provides each agent with a bundle of equal or higher value (less disutility), which
provides an equal or better approximation.

Theorem 10. For fair allocation of chores under cardinality constraints, MMS-
approximation reduces to MMS-approximation of ordered instances in polynomial
time.

For chores, the use of valid reductions does not make sense in the same way as
for goods. While valid reductions could still exist and be used, there is a lack
of simple rules for finding useful valid reductions. However, we can still bound
the number of chores that have a large disutility by exploiting the pigeonhole
principle on MMS partitions. Note that Theorem 11 provides a stronger upper
bound on the number of high-valued chores than the bounds for goods when
ℓ ≥ 2.

8 As with goods, normalization does not work if vi(M) = 0. In this case, i can be
removed from the (ordered) instance by allocating i the kh worst chores in each Ch.
This would constitute a valid reduction.

16 H. Hummel and M. L. Hetland

Theorem 11. Let I = 〈N,M, V,C〉 be an instance of the fair allocation of
chores problem under cardinality constraints, with |M | ≥ |N |r + 1 for an r ∈
{0, 1, . . .}. For agent i ∈ N , let gij ∈ M denote the j-th most valuable chore in
M for i. Then,

vi({gi|N|r+1−r
, gi|N|r+2−r

, . . . , gi|N|r+1
}) ≥ µi

Theorems 8, 9 and 11 allow for an easy adjustment of the valuation functions
such that for each agent i ∈ N , µi ≤ −1, vi(M) ≥ −|N | and there are at most
r|N | chores that i values at less than −1/(r+1). Crucially, this guarantees that
no chore is valued at less than −1, allowing a variant of the bag-filling algorithm
used for goods to find 2-approximate MMS allocations.

Theorem 12. For an instance I = 〈N,M, V,C〉 of the fair allocation of chores
problem under cardinality constraints, a ((2|N | − 1)/|N |)-approximate MMS al-
location always exists and can be found in polynomial time.

For single-category instances we can also for chores find much better MMS ap-
proximate allocations using an algorithm similar to Algorithm 4.

Theorem 13. For an instance I = 〈N,M, V, 〈(C1, k1)〉〉 of the fair allocation of
chores problem under cardinality constraints, a (3/2)-approximate MMS alloca-
tion always exists and can be found in polynomial time.

8 Discussion

We improved the currently best known MMS approximation guarantees for car-
dinality constraints by extending the concepts of ordered instances and valid re-
ductions to this setting. Cardinality constraints do, however, impose additional
challenges that do not exist in the unconstrained setting, limiting the achievable
approximation guarantees. The apparent lack of a common preference order-
ing between distinct categories limits the degree to which the number of and
maximum value of high-valued goods can be restricted—an important factor in
improving the approximation guarantee of bag-filling style algorithms. Cardinal-
ity constraints also restrict the usability of other types of MMS-approximation
algorithms. For example, the lone-divider method may easily allocate bundles
that contain many items from a single category and few from others, which in
turn can make all further feasible divisions very unbalanced.

Experiments. An earlier version of this preprint (v1) contains some prelimi-
nary experimental results, along with source code.

Acknowledgements. The authors wish to acknowledge valuable input from
anonymous reviewers.

https://arxiv.org/abs/2106.07300v1

Maximin Shares Under Cardinality Constraints 17

References

1. Aigner-Horev, E., Segal-Halevi, E.: Envy-free matchings in bipartite
graphs and their applications to fair division. Information Sciences 587,
164–187 (Mar 2022). https://doi.org/10.1016/j.ins.2021.11.059 ,
https://www.sciencedirect.com/science/article/pii/S0020025521011816

2. Amanatidis, G., Markakis, E., Nikzad, A., Saberi, A.: Approximation Al-
gorithms for Computing Maximin Share Allocations. ACM Transactions on
Algorithms 13(4), 52:1–52:28 (Dec 2017). https://doi.org/10.1145/3147173 ,
https://doi.org/10.1145/3147173

3. Babaioff, M., Nisan, N., Talgam-Cohen, I.: Competitive Equilibrium with
Indivisible Goods and Generic Budgets. Mathematics of Operations Re-
search 46(1), 382–403 (Jan 2021). https://doi.org/10.1287/moor.2020.1062 ,
https://pubsonline.informs.org/doi/abs/10.1287/moor.2020.1062 , pub-
lisher: INFORMS

4. Barman, S., Krishna Murthy, S.K.: Approximation Algorithms for Maximin Fair
Division. In: Proceedings of the 2017 ACM Conference on Economics and Compu-
tation. pp. 647–664. EC ’17, Association for Computing Machinery, Cambridge,
Massachusetts, USA (Jun 2017). https://doi.org/10.1145/3033274.3085136 ,
https://doi.org/10.1145/3033274.3085136

5. Bilò, V., Caragiannis, I., Flammini, M.c., Igarashi, A., Monaco, G., Peters, D.,
Vinci, C., Zwicker, W.S.: Almost Envy-Free Allocations with Connected Bun-
dles. In: Blum, A. (ed.) 10th Innovations in Theoretical Computer Science Con-
ference (ITCS 2019). Leibniz International Proceedings in Informatics (LIPIcs),
vol. 124, pp. 14:1–14:21. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
Dagstuhl, Germany (2018). https://doi.org/10.4230/LIPIcs.ITCS.2019.14 ,
http://drops.dagstuhl.de/opus/volltexte/2018/10107, iSSN: 1868-8969

6. Biswas, A., Barman, S.: Fair Division Under Cardinality Con-
straints. In: Proceedings of the Twenty-Seventh International
Joint Conference on Artificial Intelligence. pp. 91–97. International
Joint Conferences on Artificial Intelligence Organization, Stock-
holm, Sweden (Jul 2018). https://doi.org/10.24963/ijcai.2018/13 ,
https://www.ijcai.org/proceedings/2018/13

7. Bouveret, S., Cechlárová, K., Elkind, E., Igarashi, A., Peters, D.:
Fair division of a graph. In: Proceedings of the Twenty-Sixth Inter-
national Joint Conference on Artificial Intelligence. pp. 135–141. Inter-
national Joint Conferences on Artificial Intelligence Organization, Mel-
bourne, Australia (Aug 2017). https://doi.org/10.24963/ijcai.2017/20 ,
https://www.ijcai.org/proceedings/2017/20

8. Bouveret, S., Chevaleyre, Y., Maudet, N.: Fair Allocation of Indivisible Goods. In:
Handbook of Computational Social Choice, pp. 285–310. Cambridge University
Press, 32 Avenue of the Americas, New York, NY 10013-2473, USA, 1 edn. (2016),
https://www.cambridge.org/no/academic/subjects/computer-science/artificial-intelligence-and-natural-language-processing/handbook-computational-social-choice?format=HB&isbn=9781107060432

9. Bouveret, S., Lemâıtre, M.c.: Characterizing conflicts in fair division of indivis-
ible goods using a scale of criteria. Autonomous Agents and Multi-Agent Sys-
tems 30(2), 259–290 (Mar 2016). https://doi.org/10.1007/s10458-015-9287-3 ,
http://link.springer.com/10.1007/s10458-015-9287-3

10. Budish, E.: The Combinatorial Assignment Problem: Approximate Com-
petitive Equilibrium from Equal Incomes. Journal of Political Econ-
omy 119(6), 1061–1103 (Dec 2011). https://doi.org/10.1086/664613 ,

https://doi.org/10.1016/j.ins.2021.11.059
https://doi.org/10.1016/j.ins.2021.11.059
https://www.sciencedirect.com/science/article/pii/S0020025521011816
https://doi.org/10.1145/3147173
https://doi.org/10.1145/3147173
https://doi.org/10.1145/3147173
https://doi.org/10.1287/moor.2020.1062
https://doi.org/10.1287/moor.2020.1062
https://pubsonline.informs.org/doi/abs/10.1287/moor.2020.1062
https://doi.org/10.1145/3033274.3085136
https://doi.org/10.1145/3033274.3085136
https://doi.org/10.1145/3033274.3085136
https://doi.org/10.4230/LIPIcs.ITCS.2019.14
https://doi.org/10.4230/LIPIcs.ITCS.2019.14
http://drops.dagstuhl.de/opus/volltexte/2018/10107
https://doi.org/10.24963/ijcai.2018/13
https://doi.org/10.24963/ijcai.2018/13
https://www.ijcai.org/proceedings/2018/13
https://doi.org/10.24963/ijcai.2017/20
https://doi.org/10.24963/ijcai.2017/20
https://www.ijcai.org/proceedings/2017/20
https://www.cambridge.org/no/academic/subjects/computer-science/artificial-intelligence-and-natural-language-processing/handbook-computational-social-choice?format=HB&isbn=9781107060432
https://doi.org/10.1007/s10458-015-9287-3
https://doi.org/10.1007/s10458-015-9287-3
http://link.springer.com/10.1007/s10458-015-9287-3
https://doi.org/10.1086/664613
https://doi.org/10.1086/664613

18 H. Hummel and M. L. Hetland

https://www.journals.uchicago.edu/doi/full/10.1086/664613 , publisher:
The University of Chicago Press

11. Chiarelli, N., Krnc, M., Milanič, M., Pferschy, U., Pivač, N., Schauer, J.: Fair
packing of independent sets. In: Combinatorial Algorithms. pp. 154–165. Lec-
ture Notes in Computer Science, Springer International Publishing, Cham (2020).
https://doi.org/10.1007/978-3-030-48966-3_12

12. Feige, U., Sapir, A., Tauber, L.: A tight negative example for MMS fair allo-
cations. arXiv:2104.04977 [cs] (Apr 2021), http://arxiv.org/abs/2104.04977 ,
arXiv: 2104.04977

13. Ferraioli, D., Gourvès, L., Monnot, J.: On Regular and Approximately Fair Allo-
cations of Indivisible Goods. In: Proceedings of the 2014 International Conference
on Autonomous Agents and Multi-Agent Systems. pp. 997–1004. AAMAS ’14, In-
ternational Foundation for Autonomous Agents and Multiagent Systems, Paris,
France (2014). https://doi.org/10.5555/2615731.2617405

14. Garg, J., McGlaughlin, P., Taki, S.: Approximating Maximin Share Alloca-
tions. In: Fineman, J.T., Mitzenmacher, M. (eds.) 2nd Symposium on Sim-
plicity in Algorithms (SOSA 2019). OpenAccess Series in Informatics (OA-
SIcs), vol. 69, pp. 20:1–20:11. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
Dagstuhl, Germany (2019). https://doi.org/10.4230/OASIcs.SOSA.2019.20 ,
http://drops.dagstuhl.de/opus/volltexte/2018/10046

15. Garg, J., Taki, S.: An Improved Approximation Algorithm for Maximin
Shares. In: Proceedings of the 21st ACM Conference on Economics and
Computation. pp. 379–380. EC ’20, Association for Computing Machinery,
New York, NY, USA (Jul 2020). https://doi.org/10.1145/3391403.3399526 ,
https://doi.org/10.1145/3391403.3399526 , arXiv: 1903.00029

16. Ghodsi, M., Hajiaghayi, M., Seddighin, M., Seddighin, S., Yami, H.:
Fair Allocation of Indivisible Goods: Improvements and Generalizations.
In: Proceedings of the 2018 ACM Conference on Economics and Com-
putation. pp. 539–556. EC ’18, Association for Computing Machinery,
Ithaca, NY, USA (Jun 2018). https://doi.org/10.1145/3219166.3219238 ,
https://doi.org/10.1145/3219166.3219238

17. Gourvès, L., Monnot, J.: On maximin share alloca-
tions in matroids. Theoretical Computer Science 754, 50–
64 (Jan 2019). https://doi.org/10.1016/j.tcs.2018.05.018 ,
http://www.sciencedirect.com/science/article/pii/S0304397518303384

18. Gourvès, L., Monnot, J., Tlilane, L.: Near fairness in matroids. In: Proceedings
of the Twenty-first European Conference on Artificial Intelligence. pp. 393–398.
ECAI’14, IOS Press, Prague, Czech Republic (Aug 2014)

19. Greco, G., Scarcello, F.: The Complexity of Computing Maximin Share Alloca-
tions on Graphs. Proceedings of the AAAI Conference on Artificial Intelligence
34(02), 2006–2013 (Apr 2020). https://doi.org/10.1609/aaai.v34i02.5572 ,
https://ojs.aaai.org/index.php/AAAI/article/view/5572, number: 02

20. Hummel, H., Hetland, M.L.: Fair allocation of conflicting
items. Autonomous Agents and Multi-Agent Systems 36(1),
8 (Dec 2021). https://doi.org/10.1007/s10458-021-09537-3 ,
https://doi.org/10.1007/s10458-021-09537-3

21. Hummel, H., Hetland, M.L.: Guaranteeing half-maximin shares under cardinality
constraints. In: Proceedings of the 21st International Conference on Autonomous
Agents and Multiagent Systems. pp. 1633–1635. AAMAS ’22, International Foun-
dation for Autonomous Agents and Multiagent Systems (2022)

https://www.journals.uchicago.edu/doi/full/10.1086/664613
https://doi.org/10.1007/978-3-030-48966-3_12
https://doi.org/10.1007/978-3-030-48966-3_12
http://arxiv.org/abs/2104.04977
https://doi.org/10.5555/2615731.2617405
https://doi.org/10.5555/2615731.2617405
https://doi.org/10.4230/OASIcs.SOSA.2019.20
https://doi.org/10.4230/OASIcs.SOSA.2019.20
http://drops.dagstuhl.de/opus/volltexte/2018/10046
https://doi.org/10.1145/3391403.3399526
https://doi.org/10.1145/3391403.3399526
https://doi.org/10.1145/3391403.3399526
https://doi.org/10.1145/3219166.3219238
https://doi.org/10.1145/3219166.3219238
https://doi.org/10.1145/3219166.3219238
https://doi.org/10.1016/j.tcs.2018.05.018
https://doi.org/10.1016/j.tcs.2018.05.018
http://www.sciencedirect.com/science/article/pii/S0304397518303384
https://doi.org/10.1609/aaai.v34i02.5572
https://doi.org/10.1609/aaai.v34i02.5572
https://ojs.aaai.org/index.php/AAAI/article/view/5572
https://doi.org/10.1007/s10458-021-09537-3
https://doi.org/10.1007/s10458-021-09537-3
https://doi.org/10.1007/s10458-021-09537-3

Maximin Shares Under Cardinality Constraints 19

22. Kurokawa, D., Procaccia, A.D., Wang, J.: When can the maximin share guarantee
be guaranteed? In: Proceedings of the Thirtieth AAAI Conference on Artificial
Intelligence. pp. 523–529. AAAI’16, AAAI Press, Phoenix, Arizona (Feb 2016)

23. Kurokawa, D., Procaccia, A.D., Wang, J.: Fair Enough: Guaranteeing Ap-
proximate Maximin Shares. Journal of the ACM 65(2), 8:1–8:27 (Feb 2018).
https://doi.org/10.1145/3140756 , https://doi.org/10.1145/3140756

24. Li, Z., Vetta, A.: The Fair Division of Hereditary Set Sys-
tems. ACM Transactions on Economics and Computation
9(2), 1–19 (Jun 2021). https://doi.org/10.1145/3434410 ,
https://dl.acm.org/doi/10.1145/3434410

25. Lonc, Z., Truszczynski, M.: Maximin Share Allocations on Cycles. In: Proceed-
ings of the Twenty-Seventh International Joint Conference on Artificial Intel-
ligence, IJCAI-18. pp. 410–416. International Joint Conferences on Artificial
Intelligence Organization (2018). https://doi.org/10.24963/ijcai.2018/57 ,
https://doi.org/10.24963/ijcai.2018/57

26. Procaccia, A.D., Wang, J.: Fair Enough: Guaranteeing Approximate Maximin
Shares. In: Proceedings of the fifteenth ACM conference on Economics and
computation. pp. 675–692. EC ’14, Association for Computing Machinery, Palo
Alto, California, USA (Jun 2014). https://doi.org/10.1145/2600057.2602835 ,
https://doi.org/10.1145/2600057.2602835

27. Shoshan, H., Segal-Halevi, E., Hazon, N.: Efficient Nearly-Fair Di-
vision with Capacity Constraints. arXiv:2205.07779 [cs] (May 2022),
http://arxiv.org/abs/2205.07779 , arXiv: 2205.07779

28. Suksompong, W.: Constraints in fair division. ACM SIGecom Exchanges
19(2), 46–61 (Dec 2021). https://doi.org/10.1145/3505156.3505162 ,
https://doi.org/10.1145/3505156.3505162

29. Woeginger, G.J.: A polynomial-time approximation scheme for maximiz-
ing the minimum machine completion time. Operations Research Letters
20(4), 149–154 (May 1997). https://doi.org/10.1016/S0167-6377(96)00055-7 ,
http://www.sciencedirect.com/science/article/pii/S0167637796000557

https://doi.org/10.1145/3140756
https://doi.org/10.1145/3140756
https://doi.org/10.1145/3140756
https://doi.org/10.1145/3434410
https://doi.org/10.1145/3434410
https://dl.acm.org/doi/10.1145/3434410
https://doi.org/10.24963/ijcai.2018/57
https://doi.org/10.24963/ijcai.2018/57
https://doi.org/10.24963/ijcai.2018/57
https://doi.org/10.1145/2600057.2602835
https://doi.org/10.1145/2600057.2602835
https://doi.org/10.1145/2600057.2602835
http://arxiv.org/abs/2205.07779
https://doi.org/10.1145/3505156.3505162
https://doi.org/10.1145/3505156.3505162
https://doi.org/10.1145/3505156.3505162
https://doi.org/10.1016/S0167-6377(96)00055-7
https://doi.org/10.1016/S0167-6377(96)00055-7
http://www.sciencedirect.com/science/article/pii/S0167637796000557

20 H. Hummel and M. L. Hetland

Appendix

A Omitted Proofs for Section 2

Proof (for Theorem 1). Assume that A is not an MMS allocation of I ′. Then,
there is an agent i′ ∈ N such that v′i′ (Ai′) < µI′

i′ . However, since v′i′ (j) =
ai′vi′(j), it follows that

µI′

i′ = max
A′∈FI′

min
Aj∈A′

v′i′(Aj) = max
A′∈FI′

min
Aj∈A′

ai′vi′(Aj) = ai′µ
I
i′

Consequently, v′i′(Ai′) = ai′vi′ (Ai′) ≥ ai′µ
I
i′ = µI′

i′ . This is a contradiction, and

there can be no i′ with v′i′(Ai′) < µI′

i′ . Hence, A is an MMS allocation of I ′.

Proof (for Theorem 2). Since the valuations are additive, for any allocation A
of I, we have that vi(M) =

∑

Aj∈A vi(Aj). Consequently, the value of the least

valuable bundle B∗ ∈ A must be such that |N |vi(B∗) ≤ vi(M), as otherwise,
∑

Aj∈A vi(Aj) > vi(M). Therefore,

µi = max
A∈FI

min
Aj∈A

vi(Aj) ≤ max
A∈FI

vi(M)

|N | = 1

⊓⊔

B Omitted Proofs for Section 3

Proof (for Lemma 1). First, note that creating an ordered instance does not
affect any agent’s MMS: For any given agent, Algorithm 1 implicitly defines a
one-to-one mapping on each category Ch, corresponding to a permutation of the
good values. Because the valuations are only interchanged within each Ch, the
map can be used to convert any allocation between the two instances, preserving
feasibility, without changing the value of any individual bundle. The MMS of
the agent is independent of the valuations of other agents, and so the MMS must
be the same in both instances.

As algorithms 1 and 2 are equivalent to those of Bouveret and Lemâıtre
within each individual category, it follows that the value an agent receives from
each category is at least as high in allocation A for the original instance as in
allocation A′ for the ordered instance. Thus, the agent’s total value in A for
the original instance must at least be as high as in A′ for the ordered instance.
Neither algorithm will introduce violations of the cardinality constraints, and
since the MMS is unchanged between the two instances, it follows that the new
allocation is also a feasible α-approximate MMS allocation. ⊓⊔

Maximin Shares Under Cardinality Constraints 21

C Omitted Proofs from Section 4

Proof (for Theorem 4). For B′ and i to be a valid reduction we must show that
(i) B′ is a feasible bundle, (ii) vi(B

′) ≥ αµi, (iii) I ′ = 〈N \ {i},M \B′, V ′, C′〉
has at least one feasible allocation and (iv) µI′

i′ ≥ µI
i′ for all i

′ ∈ N \ {i}.
For B′ to be feasible, then it must hold that |Ch ∩B′| ≤ kh for any category

Ch ∈ C. Since B is feasible (|Ch ∩B| ≤ kh), we have that:

|Ch ∩B′| = |Ch ∩B|+max(0, |Ch \B| − (|N | − 1)kh)

= |Ch ∩B|+max(0, |Ch| − |Ch ∩B| − (|N | − 1)kh)

≤ |Ch ∩B|+ |N |kh − |Ch ∩B| − (|N | − 1)kh

≤ kh.

Consequently, (i) holds. Further, since B ⊆ B′ we have vi(B
′) ≥ vi(B) ≥ αµi

and (ii) also holds. For (iii), note that if |Ch \B| > (|N |− 1)kh for some Ch ∈ C,
B′ contains |Ch \ B| − (|N | − 1)kh additional goods from Ch. Consequently,
|Ch \ B′| ≤ (|N | − 1)kh and Ch \ B′ does not contain more goods than can be
given to |N | − 1 agents. Therefore, I ′ has a feasible allocation and (iii) holds.

For simplicity, we now assume without loss of generality that if j ∈ B and
j ∈ Bi′ , then f(j) = j. If this does not hold for f , then we can define a new
injective function f ′ : B → Bi′ satisfying the criteria of the theorem by

f ′(j′) =











j if j′ = j

f(j) if f(j′) = j

f(j′) otherwise

for all j′ ∈ B. The requirements of the theorem also hold for f ′, as it is injective,
j, j′ and f(j) all belong to the same category and vi′(j

′) ≤ vi′(j) ≤ vi′ (f(j)).
For (iv) we want to show that for any agent i′ ∈ N \ {i}, we can modify their

MMS partition such that Bi′ is converted into B while maintaining a feasible
partition and without decreasing the value of any other bundle in the partition.
In other words, we want to show that there is a feasible partition containing B,
and (|N | − 1) bundles with a value of no less than µI

i′ to i′. The transformation
can be achieved by performing three steps in order:

1. For each j ∈ B, exchange the placement of j and f(j) in the MMS partition.
2. While |Ch ∩ B′| < |Ch ∩ Bi′ |, move a good in (Ch ∩ Bi′) \ B′ to any other

bundle Bi′′ with |Ch ∩Bi′′ | < kh.
3. While Ch ∩B′ 6= Ch ∩Bi′ , exchange any good in (Ch ∩Bi′) \B′ for a good

of equivalent or lower value in (Ch ∩B′) \Bi′ .

Note that non of the operations can cause infeasibility, as both goods in steps 1
and 3 belong to the same category. Additionally, in step 2, Bi′′ has space for at
least one more good from Ch.

The value of any other bundle than Bi′ will not decrease during the trans-
formation. In steps 1 and 3 the good removed from Bi′ has a value that is either

22 H. Hummel and M. L. Hetland

equivalent to or higher than the one it is exchanged for. As each good has a
non-negative value, the value of the receiving bundle cannot decrease in step 2.
Since each of the bundles in the MMS partition had a value of at least µI

i prior
to the transformation, there are at least |N | − 1 bundles with a value of at least
µI
i after the transformation.
We now need to show that each step can be performed, and that B′ = Bi′

after step 3. Exchanging the position of two goods from the same category is
always possible, and step 1 can always be performed. Additionally, as f is in-
jective and f(j) = j for any j ∈ B with j ∈ Bi′ , we have that for j ∈ B either
f(j) /∈ B or f(j) = j. Consequently, each exchange either brings j into Bi′ with-
out removing any item from B or exchanges j for itself within Bi′ . After step 1,
we thus have B ⊆ Bi′ .

In step 2, we know that |(Ch∩Bi′)\B′| ≥ |Ch∩Bi′ |− |Ch∩B′| > 0 whenever
the condition of the step holds. The only way the step can fail is thus that there
is no bundle Bi′′ . However, by the construction of B′ and as I is feasible, we
have that when selecting Bi′′ :

|Ch| ≤ (|N | − 1)kh + |Ch ∩B′| ≤ (|N | − 1)kh − 1 + |Ch ∩Bi′ |,
and one of the other bundles contains less than kh goods from Ch.

We claim that after step 2, |Ch ∩B′| = |Ch ∩Bi′ | for each category Ch ∈ C.
If this does not hold, then |Ch ∩ B′| > |Ch ∩ Bi′ | after step 1. We know that
either B ∩ Ch = B′ ∩ Ch or |Ch \ B′| = (|N | − 1)kh. If B ∩ Ch = B′ ∩ Ch, then
(B′ ∩Ch) ⊆ Bi′ and if |Ch \B′| = (|N | − 1)kh then, |B′ ∩Ch| > |Bi′ ∩Ch| would
imply infeasiblity. Consequently, |B′ ∩Ch| = |Bi′ ∩Ch| for each category Ch ∈ C
after step 2. Additionally, no good in B′ is removed from Bi′ in this step and it
still holds that B ⊆ Bi′ .

The only way that step 3 can fail is if (Ch∩Bi′)\B′ 6= ∅, but there is no good
in (Ch ∩B′) \Bi′ of equivalent or lower value. Note that (Ch ∩B′) \Bi′ always
contains the same number of goods as (Ch ∩Bi′) \B′ as the sets had equivalent
size after step 2 and each exchange in step 3 reduces the size of both by 1. Since
B ⊆ Bi′ , for any good j ∈ (Ch ∩B′) \Bi′ we have j /∈ B and by construction B′

contains all goods in Ch of lower value than j. Therefore, (Ch ∩Bi′) \B′ cannot
contain a good of lower value than j and any good in (Ch ∩B′) \Bi′ can be used
in the exchange. In other words, step 3 will never fail. Finally, after step 3 we
have that (Ch ∩B′) \Bi′ = ∅ = (Ch ∩Bi′) \B′ for each category Ch ∈ C which
implies B′ = Bi′ . Thus, (iv) holds. ⊓⊔
Proof (for Corollary 1). Each good must appear in exactly one bundle in any
MMS partition. Thus, each agent i′ ∈ N \ {i} has in each one of their MMS
partitions a bundle Bi′ , with j ∈ Bi′ . Consequently, there exists an injective map
f : {j} → Bi′ satisfying the conditions of Theorem 4, namely f(j) = j. Since
{j} is a feasible bundle (otherwise FI = ∅), all the conditions of Theorem 4 are
satisfied and {j} can be used to create a valid reduction by setting B = {j} and
creating B′ as in Theorem 4. ⊓⊔
Proof (for Corollary 2). Since there are exactly |N | bundles in any MMS parti-
tion and |Ch| ≥ |N |+1, any agent i′ ∈ N \ {i} must by the pigeonhole principle

Maximin Shares Under Cardinality Constraints 23

in any one of their MMS partitions have a bundle Bi′ that contains at least
two goods from {c1, c2, . . . , c|N |+1}. Since c|N | and c|N |+1 are the two least valu-
able goods in {c1, c2, . . . , c|N |+1}, Bi′ contains goods j, j

′ ∈ {c1, c2, . . . , c|N |+1},
j 6= j′, such that vi′ (j) ≥ vi′(c|N |) and vi′(j

′) ≥ vi′ (c|N |+1). Consequently, the
map f : {c|N |, c|N |+1} → Bi′ with f(c|N |) = j and f(c|N |+1) = j′ satisfies the
conditions of Theorem 4. Since FI 6= ∅, the bundle {c|N |, c|N |+1} is feasible and
Theorem 4 says that {c|N |, c|N |+1} can be used to create a valid reduction. ⊓⊔

D Omitted Proofs from Section 5

Proof (for Theorem 6). To show that a certain approximation guarantee can
be fulfilled by the lone-divider technique, it suffice to show that after b < |N |
bundles have been allocated, any one of the remaining agents i can partition the
remaining goods into |N | − b feasible bundles each with a value of at least αµi.
We wish to show that this is possible when α = (

√

|N |)/(2
√

|N |− 1). In the first
step this is obviously true, as any MMS partition of the selected agent can be
used. In any other step, we will use one of two possible strategies to divide the
goods. Note that since each step allocates one or more bundles from a feasible
allocation, there at any point remains at most as many goods from each category
as can be allocated to the remaining agents.

First, notice that when b bundles have been allocated, the remaining value
is at least |N |µi − bαµi for any remaining agent i. By Lemma 3, Algorithm 3
can be used to find a partition of the remaining goods so that the value of each
bundle is at least a (|N | − b)/(2(|N | − b)− 1) share of the remaining value, given
that any single good is not worth more than this share. If the remaining value is
at least (|N |− b− 1)2αµi+αµi, then this guarantees that the method gives each
remaining agent a bundle of value at least αµi. Through valid reductions, the
condition on the maximum value of any individual good can easily be achieve
before the lone-divider technique is applied. Note that when Algorithm 3 is
applicable, a final allocation can immediately be achieved, rather than having to
following the lone-divider strategy any further. Thus, we only wish to show that
the lone-divider strategy can be performed until the remaining value to agent
ratio is high enough.

If α = (
√

|N |)/(2
√

|N | − 1), the remaining value may initially be less than
2(|N |−b−1)αµi+αµi. However, as long as bαµi ≤ (b+1)(1−α)µi, the partition
created by taking one of i’s MMS partitions and removing all already allocated
goods, contains at least |N |−b bundles with a value of at least αµi. This partition
can contain more than |N | − b non-empty bundles. To turn it into a partition
that contains exactly |N | − b bundles of value at least αµi, select a subset of
|N | − b bundles, each with a value of at least αµi. For any other bundle, transfer
the goods to any one of the bundles in the selected subset that has space for
more goods. There is always a bundle with space left, as there are at most as
many remaining goods in each category as can fit in |N | − b bundles.

If for some remaining agent i, bαµi ≤ (b + 1)(1 − α)µi, then another step
of the lone-divider strategy can be performed by selecting i. We thus need to

24 H. Hummel and M. L. Hetland

show that for α = (
√

|N |)/(2
√

|N | − 1), when bαµi > (b + 1)(1− α)µi for each
remaining agent i, then |N |µi− bαµi ≥ (|N |− b− 1)2αµi+αµi for all remaining
agents i. If µi = 0, then bαµi = 0 = (b + 1)(1 − α)µi. So, we can without loss
of generality assume that µi = 1 for all remaining agents i when bαµi > (b +
1)(1− α)µi. Since α > 1/2, we have the following when bα > (b+ 1)(1− α):

bα > (b+ 1)(1 − α)

2bα− b > 1− α

b >
1− α

2α− 1

We now need to show that when b > 1−α
2α−1 , then for α = (

√

|N |)/(2
√

|N | − 1)
we have |N | − bα ≥ (|N | − b− 1)2α+ α. That is, we need to show that

|N | − bα ≥ (|N | − b− 1)2α+ α

|N | ≥ (2|N | − b− 1)α

≥
(

2|N | − 1− α

2α− 1
− 1

)

α

≥ 2|N |α− α− α2

2α− 1
− 2α2 − α

2α− 1

≥ 2|N |α− α2

2α− 1

Which can be reorganized to 4α|N | − |N | ≥ (4|N | − 1)α2. Using α =

√
|N |

2
√

|N |−1
,

we get that

4α|N | − |N | = 4|N |
√

|N |
2
√

|N | − 1
− |N |

=
(4|N |

√

|N |)(2
√

|N | − 1)

(2
√

|N | − 1)2
− |N |(2

√

|N | − 1)2

(2
√

|N | − 1)2

=
8|N |2 − 4|N |

√

|N |
(2
√

|N | − 1)2
− 4|N |2 − 4|N |

√

|N |+ |N |
(2
√

|N | − 1)2

=
4|N |2 − |N |
(2
√

|N | − 1)2

=
(4|N | − 1)|N |
(2
√

|N | − 1)2

= (4|N | − 1)

(

√

|N |
2
√

|N | − 1

)2

= (4|N | − 1)α2

Since the left and right hand sides are equal, 4α|N | − |N | ≥ (4|N | − 1)α2 and
setting α = (

√

|N |))/(2
√

|N | − 1) guarantees that at least one of the two meth-

ods work. Consequently, a (
√

|N |/(2
√

|N | − 1))-approximate MMS allocation

Maximin Shares Under Cardinality Constraints 25

always exists. Since the two sides are equal for all possible values of |N |, this is
the greatest α this method works for. ⊓⊔

E Omitted Proofs from Section 6

Proof (for Lemma 4). Let A be an MMS partition of i and S =
⋃

Ak∈A∗ Ak,
where A∗ is a set of |N | − r + 1 bundles in A with Ak ∩ {1, 2, . . . , r − 1} = ∅ for
each Ak ∈ A∗. Since 0 < r ≤ |N | and at most r − 1 bundles can contain goods
from {1, 2, . . . , r− 1}, there are at least |N | − (r− 1) = |N | − r+1 bundles that
can be used in A∗. Further, there is no good j ∈ (M \ ({1, 2, . . . , r − 1} ∪ Br))
with vi(j) > vi(j

′) for any good j′ ∈ Br. Thus, we have that for j ∈ S, either
j ∈ Br or vi(j

′) ≥ vi(j) for all j′ ∈ B \ S. As either |Br| = k1(|N | − r + 1) or
|Br| = |M \ {1, 2, . . . , r − 1}|, we have |Br| ≥ |S|, and

vi(Br) ≥ vi(S) =
∑

Ak∈A∗

vi(Ak) ≥
∑

Ak∈A∗

µi = (|N | − r + 1)µi

⊓⊔
Proof (for Lemma 5). To prove that the algorithm finds a (2/3)-MMS allocation
in polynomial time, we wish to show that (i) any B′

j allocated is feasible, (ii) all
goods are allocated, (iii) both while-loops (lines 5 and 7) finish running for each
B′

j , and (iv) the algorithm finishes in polynomial time. Note that (iii) guarantees
that there is always an agent that values B′

j at 2/3. As a consequence, as long
as (iii) holds, each agent i ∈ N will receive a bundle worth (2/3)µi.

Feasible and complete allocation

For (i) and (ii), we wish to show that at the end of each iteration of the for loop,
|M | ≤ k1|N |. By the assumption that any instance has at least one feasible
allocation, this holds before the first iteration. Assume that this holds at the
start of a iteration for a specific j, i.e., |M | ≤ jk1. Then, we must show that
|M |− |B′

j | ≤ (j−1)k1 when B′
j is allocated to an agent. Throughout an iteration,

the size of B′
j never decreases. If line 4 is executed, then |B′

j | > 1 + (|M | −
k1(j − 1)− 1) = |M | − k1(j − 1) and it follows that |M | − |B′

j | < |M | − (|M | −
k1(j − 1)) = k1(j − 1). If on the other hand, line 4 is not executed, then |M | ≤
k1(j − 1) + 1 = k1(j − 1) + |B′

j |. Consequently, |M | − |B′
j | ≤ (j − 1)k1 always

holds. After the last iteration, |N | = 0 implying that |M | ≤ 0k1 = 0. Thus, (ii)
must hold as long as Algorithm 4 finishes. Since the loop on line 5 only adds items
as long as |B′

j | < k1 and the loop on line 7 does not change |B′
j |, |B′

j | ≤ k1 as
long as line 4 does not add too many goods to B′

j . However, since |M | ≤ jk1,
the line adds at most jk1 − k1(j − 1) − 1 = k1 − 1 goods to B′

j , which at this
point only contains a single good. Thus, (i) holds.

Bundle value always reaches 2/3

26 H. Hummel and M. L. Hetland

For (iii) we wish to show that during the execution of the first loop (line 5),
either vi(B

′
j) ≥ 2/3 for some i ∈ N or |B′

j | = k1. Additionally, we wish to show
that during the second loop, vi(B

′
j) ≥ 2/3 for some i ∈ N . In order to show

this, let Bj
r denote the bundle consisting of the min(|Br ∩ M |, k1(j − r + 1))

most valuable remaining goods in Br (i.e., in Br ∩M) at the start of iteration
j for all r ≤ j. We wish to show that in any iteration j, for all i ∈ N we have
vi(B

j
r) ≥ j − r+1. This will in turn guarantee that vi(B

j
r) ≥ 1 for all remaining

agents i when j = r, and the bundle B′
j will be able to reach a value of 2/3

either in the first loop when |M \ (B′
1 ∪B′

2 ∪ · · · ∪B′
j−1)| ≤ k1, or otherwise by

the time the second loop runs out of improvements to make, as |Br
r | ≤ k1.

By Lemma 4, it follows that when j = |N | in the first iteration, Br = Bj
r .

Thus, vi(B
j
r) = vi(Br) ≥ j − r+1 and the invariant holds initially. Now assume

that vi(B
j
r) ≥ j − r + 1 for some j > 1 and all r ≤ j. We wish to show that

the invariant then also holds for j′ = j − 1. In other words, we wish to show
that vi(B

j′

r) > (j′ − r + 1) for all r ≤ j′ and remaining agents i. There are two
possible situations that need to be accounted for, depending on if vi(B

′
j) > 1 or

vi(B
′
j) ≤ 1 for agent i.
Since any good g ∈ (M \ (B′

1 ∪B′
2 ∪ · · · ∪B′

j)) has vi(g) < 1/3, the only way
for vi(B

′
j) to be greater than 1 is if this occurs when the bundle is modified on

line 4. In that case, the bundle will not be modified further before it is allocated
and we have that |M \B′

j | = j′k1 =⇒ |Bj′

r | = k1(j
′ − r + 1). Further, since B′

j

consist of j and the at most k1 − 1 least valuable goods in M , we know that Bj′

r

consists of, in addition to {r, r + 1, . . . j′}, (k1 − 1)(j′ − r + 1) goods in M , each
with at least the same value as any of the maximum k1 − 1 goods in B′

j \ {j}.
In other words,

vi(B
j′

r) = vi({r, r + 1, . . . , j′}) + vi(B
j′

r \ {r, r + 1, . . . , j′})
≥ (j′ − r + 1)vi(j) + (j′ − r + 1)vi(B

′
j \ {j})

= (j′ − r + 1)vi(B
′
j)

> j′ − r + 1

This leaves the case where vi(B
′
j) ≤ 1. In this case we distinguish between two

cases, depending on if Bj′

r = Bj
r \B′

j or not. If this holds true, then

vi(B
j′

r) = vi(B
j
r \B′

j) ≥ vi(B
j
r)− vi(B

′
j) > (j − r + 1)− 1 = j′ − r + 1

If Bj′

r 6= Bj
r \B′

j , we claim that B′
j \ {j} does not contain any good better than

the (j − r)k1 +3 most valuable good in Bj
r . If a good g, that is the (j − r)k1 +2

most valuable good in Bj
r or better, is added to B′

j on line 4 or in the first
loop (line 5), then B′

j contains all goods in M that are worse than g, and by
definition all goods in Bj

r that are worse than g. This is a contradiction, as then
|Bj

r \ B′
j | ≤ k1(j − 1) and M \ (B′

1 ∪ B′
2 ∪ · · · ∪ B′

j) = Bj
r \ B′

j , which implies
that Bj′

r = Bj
r \ B′

j . Thus, the only way that such a g could be added to B′
j

and maintain Bj′

r 6= Bj
r \ B′

j , is in the second loop (line 7). However, when
a good g is added to B′

j in the second loop, |B′
j | = k1 and B′

j contains the
goods {g + 1, g + 2, . . . , g + k1 − 2}. Thus, since g is the (j − r)k1 + 2 most

Maximin Shares Under Cardinality Constraints 27

valuable good in Bj
r or better, g + k1 − 2 ∈ Bj

r as Bj
r by definition contains

as many goods as possible up to (j − r + 1)k1 goods and g + k1 − 2 is the
(j − r)k1 + 2 + k1 − 2 = (j − r + 1)k1 good in Bj

r . Consequently, B
′
j ∈ Bj

r and
Bj′

r = Bj
r \B′

j which is another contradiction and the claim holds.

It remains to show that when B′
j contains j and no better than the (j− r)k1+

3 good in Bj
r , then vi(B

j′

r) ≥ (j′− r+1). We can divide Bj
r into j− r+1 bundles

of at most k1 goods each, by creating the bundles {r}, {r+ 1}, . . . , {j} and then
as long as there remains goods in Bj

r , placing the most valuable remaining good
into the first of the bundles which does not have k1 goods yet. Then the bundle
that started with the good j contains, except for j, no good better than the
(j − r)k1 + 2 most valuable good in Bj

r and since j is the least valuable good of
the ones initially placed in the bundles, the last bundle is the least valuable of
any of the bundles. In other words, the value of all but the last bundle is at least
((j − r)/(j − r+1))vi(B

j
r) = j − r = j′ − r+1. Since B′

j only intersects this last
bundle, and there are no more than (j − r)k1 goods in the other bundles, there
remains at least (j′ − r + 1)k1 goods in Bj

r with a combined value of at least
j′ − r + 1 and the invariant holds for j′. By induction it holds for all values of j
and (iii) holds.

Polynomial run time

It remains to show that (iv) holds, namely that the algorithm uses polynomial
time. The outer loop has as many iteration as there are agents, so it suffice to
show that each iteration is polynomial. The loop on line 5 runs for at most k1− 1
iterations, as |B′

j | ≥ 1 prior to the first iteration and each iteration increases the
size of B′

j by 1 up to a maximum of k1. The loop on line 7 also runs for a
maximum of |M | iterations, as each iteration exchanges the least valuable good
g ∈ B′

j for the least valuable, but better good in M \ (B′
1 ∪B′

2 ∪ · · · ∪B′
j). Since

g now is worse than all goods in B′
j , it will never be picked again. Thus, the

size of the set of goods in M \ (B′
1 ∪ B′

2 ∪ · · · ∪ B′
j) that will never be picked

again increases by 1 each iteration and after (less than) |M | iterations there is
no good to pick. Since each loop has a polynomial number of iterations and each
individual operation can be performed in polynomial time, the algorithm must
finish in polynomial time and (iv) holds. ⊓⊔

Proof (of Theorem 7). We wish to show that for any instance I we can in poly-
nomial time either convert the instance into one that Algorithm 4 accepts or
failing that we can directly create a (2/3)-approximate MMS allocation.

We can by Theorem 3 convert I to an ordered instance. The other require-
ments for Algorithm 4 can be achieved by performing the following steps. Note
that step 3 may cause some remaining agent i′ to have vi′ (M) = 0, in which
case step 1 cannot possibly rescale the agent’s valuations so that vi′ = |N |. In
this case, just skip the rescaling of agent i′’s valuations, and agent i′ will at
some point be reduced away in step 3. The same may happen for i′ and step 2
if vi′(|N |) = 0. In which case step 3 will find a valid reduction with i′.

28 H. Hummel and M. L. Hetland

1. For all i ∈ N , rescale i’s valuations so that vi(M) = |N |.
2. If for any i ∈ N, r ∈ {1, 2, . . . , |N |}, vi(Br) < |N | − r + 1, rescale i’s valua-

tions so that vi(Br) = |N | − r + 1.
3. If vi(1) ≥ 2/3 or vi({|N |, |N | + 1}) ≥ 2/3 for i ∈ N , construct a valid re-

duction with, respectively, {1} or {|N |, |N |+1} and agent i, and go back to
step 1.

First, we wish to show that after step 2, it holds that µi ≤ 1 and vi(Br) ≥
|N | − r+ 1 for all i and r. By Theorem 2 it holds that µi ≤ 1 for all i ∈ N after
step 1. In step 2, the rescaling increases the value of all goods (of non-zero value).
Thus, rescaling for a specific i and r does not decrease the value of vi(Br′) for r

′ ∈
{1, 2, . . . , |N |}. Hence, after step 2 it holds that vi(Br) ≥ |N |− r+1 for all i ∈ N ,
r ∈ {1, 2, . . . , |N |}. By Lemma 4, we know that vi(Br) ≥ (|N | − r + 1)µi. Since
each rescaling sets vi(Br) = |N | − r + 1, it follows that µi ≤ 1.

Since µi ≤ 1, Corollaries 1 and 2 guarantee that if one of the conditions in
step 3 hold, a valid reduction can be created for α = 2/3. Thus, it also holds that
when no valid reduction is found in step 3, then for all i ∈ N we have vi(1) < 2/3
and vi({|N |, |N |+ 1}) < 2/3 =⇒ vi(|N |+ 1) < 1/3.

The only missing condition of Algorithm 4 is |M | > |N |. If |M | ≤ 2|N | at any
point, it must hold for any i ∈ N that either vi(1) ≥ 2/3 or vi(|N | + 1) ≥ 1/3
when vi(M) ≥ |N | and |M | > 0. Therefore, when step 3 finishes without going
back to step 1, either |M | = 0 or |M | > 2|N | > |N |. In the first case, we already
have a (2/3)-approximate MMS allocation and in the latter case the missing
condition of Algorithm 4 holds for the instance.

Since both r and i are bounded in the number of agents, it can easily be
verified that each individual step can be performed in polynomial time. As each
valid reduction removes an agent, the number of times the steps are performed
is also bound in the number of agents. The preprocessing can therefore be done
in polynomial time. ⊓⊔

Proof (for Lemma 6). Any feasible allocation for an instance I of the fair allo-
cation problem under cardinality constraints is also a feasible allocation for the
unconstrained instance I ′ = 〈N,M, V 〉. By definition we thus have that µI′

i ≥ µI
i .

If no agent i ∈ N has µI
i = 0, then for any α > 0, any α-approximate MMS al-

location of I ′ must allocate at least one good to each agent i. Consequently, no
agent may receive more than |M | − |N |+1 < |N |+ k1 − |N |+1 = k1 +1 goods.
Any α-approximate MMS allocation of I ′ is then a feasible α-approximate MMS
allocation for I.

By Theorem 3 we can assume that I is ordered. If µi = 0 for an agent i ∈ N ,
then vi(j) ≥ µi for all j ∈ M and Corollary 1 can be used to reduce away i. Since
the reductions remove one item along with every agent removed, the conditions
of the lemma still hold for the reduced instance. The check can be performed in
polynomial time, as µi = 0 ⇔ vi(|N |) = 0. ⊓⊔

Proof (for Lemma 7). To show the existence of an MMS allocation when k1 ≤ 2,
we wish to show that the instance I can be reduced to an ordered instance
I ′ = 〈N ′,M ′, V ′, 〈(C′

1, k1)〉〉 with |M ′| = 2|N ′|, in which the allocation A =

Maximin Shares Under Cardinality Constraints 29

〈{1, 2|N ′|}, {2, 2|N ′| − 1}, . . . , {|N ′|, |N ′|+1} is an MMS partition for all agents
in I ′.

By Theorem 3 we can assume that I is ordered. If |M | < 2|N |, then in any
allocation there is at least one bundle containing only a single item. In other
words, Corollary 1 allows for a valid reduction with any agent i ∈ N and the
good 1 for α = 1. Thus, repeated reductions can be performed until we have
an instance I ′ where either |M ′| = 0 and we have found an MMS allocation or
|N ′| > 0 and |M ′| = 2|N ′|. In the second case, for any agent i ∈ N ′ let A′ be any
MMS partition of I for i. We wish to show that A′ can be turned into A without
reducing the value of the least-valuable bundle in A′.

Let g be the first good in {1, 2, . . . , |N |} such that {g, 2|N ′| − g + 1} /∈ A′.
Then A′ contains distinct bundles Bg = {g, g′} and B2|N ′|−g+1 = {g′′, 2|N ′| −
g + 1}. Since g was selected to be the smallest g for which this holds, all less-
valuable goods than 2|N ′|− g+1 and more valuable than g appear in other bun-
dles than Bg and B2|N ′|−g+1. Consequently, we have vi(g

′) ≥ vi(2|N ′| − g + 1),
vi(g

′′) ≥ vi(2|N ′|−g+1) and vi(g) ≥ vi(g
′′). Thus, vi({g′′, g′}) ≥ vi(B2|N ′|−g+1)

and vi({g, 2|N ′| − g + 1}) ≥ vi(B2|N ′|−g+1). We can swap the location of g′ and
2|N ′| − g + 1 to create an allocation where the worst bundle is no worse than
B2|N ′|−g+1 and that shares one more bundle with A. This can be repeated until
the allocation shares all its bundles with A. In other words, A is an MMS par-
tition of i. Since all agents share the same MMS partition, it is also an MMS
allocation.

For k1 ≥ 4, we will show that there for any k1 ≥ 4 exists an instance of
the problem for which no MMS allocation exists. The instance will be created
by introducing cardinality constraints to the unconstrained instance of Feige
et al. with 3 agents and 9 goods for which they showed that the best possible
allocation achieves no more than an approximation ratio of 39/40 [12]. Feige
et al.’s proof used MMS partitions that contained no more than four goods in
each bundle. By introducing cardinality constraints with a single category and
a threshold of k1 ≥ 4, these MMS partitions remain feasible and each agent’s
MMS stays the same. By introducing cardinality constraints, the set of feasible
allocations is a subset of the set of allocations for the unconstrained instance.
Consequently, no feasible allocation can provide all the agent’s with more value
than the best allocation in the unconstrained instance, and there does not exist
any MMS allocation. ⊓⊔

F Omitted Proof from Section 7

Proof (for Theorem 8). Exactly as the proof of Theorem 1. ⊓⊔
Proof (for Theorem 9). Exactly as the proof of Theorem 2, except that the 1 in
the last equation is exchanged for −1. ⊓⊔
Proof (for Theorem 10). Exactly as the proof of Theorem 3. ⊓⊔
Proof (for Theorem 11). Let B = {gi|N|r+1−r

, gi|N|r+2−r
, . . . , gi|N|r+1

}. By the pi-
geonhole principle, at least one bundle Aj in i’s MMS partition must contain at

30 H. Hummel and M. L. Hetland

Algorithm 5 Find a α-MMS solution to ordered chore instance

Input: An ordered instance I = 〈N,M, V,C〉 with all vij ≥ −1, vi(M) > −|N | and
µi ≤ −1

Output: Allocation A consisting of each bundle B allocated

1 while there is more than one agent left

2 B = ∪ℓ
h=1C

H
h

3 while vi(B) < −α for all agents i

4 if B ∩ CH
h 6= ∅ for some Ch

5 j = any element of CL
h \ B

6 j′ = any element of B ∩ CH
h

7 B = (B \ {j′}) ∪ {j}
8 else j = any c⌈|Ch|/n⌉ in B for Ch with |Ch|/n < ⌈|Ch|/n⌉
9 B = B \ {j}

10 allocate B to some agent i with vi(B) ≥ −α

11 remove B and i from I and update n, and CH
h and CL

h for all h

12 allocate the remaining chores to the last agent

least r + 1 chores from {gi1 , gi2 , . . . , gi|N|r+1
}. Since B contains the r + 1 least

valuable goods in this set, we have vi(B) ≥ vi(Aj) ≥ µi. ⊓⊔

F.1 Proof for Theorem 12

To prove Theorem 12, we will show that Algorithm 5, a variation of Algorithm 3,
finds (|N |/(2|N |− 1))-approximate MMS allocations for ordered instances where
no chore is worth less than −1, µi ≤ −1 and vi(M) > −|N | for all i ∈ N .
Algorithm 5 works in a similar manner to Algorithm 3, it starts by creating a
bundle B consisting of the ⌈|Ch|/n⌉ worst chores in each category Ch (denoted
by CH

h). It then gradually, as to not improve the value of the bundle by more
than 1, improves the value of the bundle by exchanging a good in some CH

h

for one of the ⌈|Ch|/n⌉ best chores in the same category (denoted by CL
h). To

mitigate the effects of rounding Ch/n, it can also remove the ⌈|Ch|/n⌉ best chore
in any Ch where ⌈|Ch|/n⌉ > |Ch|/n. This strategy guarantees, as for goods, that
the bundle created is feasible and that there at any point remains at most as
many chores as can be allocated to the remaining agents. Additionally, it makes
sure that the bundle initially contains at least 1/n of the remaining disutility
and in the end at most 1/n of the remaining disutility. Thus, a similar argument
can be made about the upper bound on the remaining disutility, as for the lower
bound on remaining value for goods.

Lemma 8. Let I = 〈N,M, V,C〉 be an ordered instance of the fair allocation
of chores problem under cardinality constraints where each chore is worth no
less than −1 and vi(M) ≥ −|N | for each i ∈ N . Let n denote the number of
remaining agents at any point during the execution of Algorithm 5. Then for

Maximin Shares Under Cardinality Constraints 31

any α ∈ (1, 2], each remaining agent assigns a value of at least −|N |+ (|N | −
n)(α − 1) to the set of unallocated chores at any point during the execution of
the algorithm.

Proof. Since vi(M) ≥ −|N |, this holds at the start of the algorithm. Assume that
there are n remaining agents at the start of an iteration and for each remaining
agent i, vi(M) ≥ −|N | + (|N | − n)(α − 1). Let i′ be the agent receiving B in
the iteration. For any remaining agent i 6= i′, we wish to show that vi(M \
B) ≥ −|N |+ (|N | − n+ 1)(α− 1). Due to the additive valuations, the only way
that vi(M \ B) < −|N |+ (|N | − n + 1)(α − 1) is if vi(B) > −α+ 1. Since any
change to B after the initial creation removes a chore from B or exchanges a
chore in B for another, any individual change cannot increase the value of B
by more than 1. Thus, the only way for vi(B) > −α+ 1 is if B =

⋃ℓ
h=1C

H
h and

vi(
⋃ℓ

h=1C
H
h) > −α+1. However, by definition vi(C

H
h) ≤ vi(Ch)/n which implies

vi(B) ≤ vi(M)/n. Consequently, vi(M \B) ≥ (n− 1)vi(B) > −(n− 1)(α− 1) ≥
−|N |+ |N |(α− 1)− (n− 1)(α− 1) = −|N |+ (|N | − n+ 1)(α− 1). ⊓⊔

With Lemma 8 we have a sufficient upper guarantee for the remaining disutility.
We are now ready to show the guarantees of Algorithm 5.

Lemma 9. Given a normalized ordered instance I = 〈N,M, V,C〉 of the fair
allocation problem under cardinality constraints where µi ≤ −1, vij ≥ −1 and
vi(M) > −|N | for all i ∈ N , j ∈ M , and α = (2|N | − 1)/|N |, Algorithm 5 finds
a feasible (2|N | − 1)/|N |-approximate MMS allocation in polynomial time in the
number of agents and chores.

Proof. When allocating the remaining chores to the last agent, Lemma 8 guar-
antees that the chores are worth at least −α, if −|N |+ (|N | − 1)(α− 1) ≥ −α,
which holds for α ≥ (2|N | − 1)/|N |. Additionally, as long as B reaches a value
of −α before running out of improvement operations, any other agent is also
guaranteed to receive a bundle they value at no less than −α. Since B contains
the ⌊Ch/n⌋ best chores in each category Ch when the algorithm runs out of
operations, B will contain chores of no more than 1/n of the remaining disu-
tility. We thus only need to show that the remaining value is always at least
−nα for any remaining agent. Lemma 8 guarantees that the remaining value
is at least −|N | + (|N | − n)α. Since, this is at least −α for n = |N | − 1 for
α ≥ (2|N | − 1)/|N |, the value is at least −(n − 1)(α − 1) − α ≥ −nα for any
other n, and we are guaranteed that the value of B reaches at least −α in any
iteration. Since µi ≤ −1 for i ∈ N , each agent i receives at least −αµi value.

It remains to show that any bundle allocated is feasible. As long as |Ch| ≤
nkh, it holds that ⌈|Ch|/n⌉ ≤ kh and any bundle allocated is feasible. Obviously,
|Ch| ≤ nkh holds when n = |N |, as all instances are assumed to have at least
one feasible complete allocation. Assume that |Ch| ≤ nkh holds at the start of
an iteration. The bundle B contains at least ⌊|Ch|/n⌋ ≥ |Ch| − (n− 1)kh of the
chores in Ch at any point during an iteration. Thus, |Ch \ B| ≤ (n − 1)kh and
the condition holds for n − 1 after allocating B. Consequently, each allocated

32 H. Hummel and M. L. Hetland

bundle, including the bundle allocated to the last agent, is feasible. Since the
last agent receives all remaining chores, all chores are allocated.

In each iteration of the algorithm, chores are removed from B and exchanged
through a set of operations. As each chore is not added back into B after being
removed, the number of operations in each iteration is polynomial in the number
of agents and chores. Since there are |N | − 1 iterations, the running time of the
algorithm is also polynomial in the number of agents and chores. ⊓⊔

We can now combine Lemma 3 with rescaling of valuations in order to show that
((2|N | − 1)/|N |)-approximate MMS allocations always exist and can be found
in polynomial time.

Proof (for Theorem 12). First of all, if the instance I has any agent i ∈ I with
vi(M) = 0, then we know we can remove i from the instance by allocating the
kh worst chores in each Ch to i. Thus, we can assume vi(M) < 0.

The instance can by Theorem 10 easily be turned into an ordered instance.
Further, the valuations of each agent i can be rescaled so that vi(M) = −|N |,
which by Theorem 9 gurantees that µi ≤ −1. Then, if vi(1) < −1, then Theo-
rem 11 allows us to rescale i’s valuations so that vi(1) = −1, while maintaining
that vi(M) ≥ −|N | and µi ≤ −1. Consequently, I can be turned into an in-
stance accepted by Algorithm 5 in polynomial time, and Lemma 9 gurantees
that a ((2|N | − 1)/|N |)-approximate MMS allocation can be found in polyno-
mial time. ⊓⊔

F.2 Proof for Theorem 13

To prove Theorem 13, we need to develop a result similar to Lemma 4 and
show that a similar algorithm to Algorithm 4 can in polynomial time find 3/2-
approximate MMS allocations for a restricted class of instances. To simplify
notation, we assume that in any ordered instance, the chores are ordered so that
the chore numbered 1 is the worst chore (provides most disutility) and the chore
numbered |M | is the best chore (provides least disutility).

Lemma 10. Let I = 〈N,M, V, 〈(C1, k1)〉〉 be an ordered instance of the the fair
allocation of chores problem under cardinality constraints. Let Br = {1, 2, . . . , r}
along with the max(0, |M | − (|N | − r)k1 − r) best chores in M , for any r ∈
{1, 2, . . . , |N |}. Then, for any i ∈ N ,

vi(Br) ≥ rµi

Proof. For any agent i ∈ N and r ∈ {1, 2, . . . , |N |}, let A be an MMS partition of
I for i. LetA∗ be the union of r bundles in A such that {1, 2, . . . , r} ⊆ A∗. At least
one such A∗ must exist as the r chores in {1, 2, . . . , r} are contained in at most
r distinct bundles in A. Since A is an MMS partition, we know that vi(A

∗) ≥ rµi.
Since A is feasible, A∗ must contain at least max(r, |M | − (|N | − r)k1) chores.
Otherwise, there are more chores left in M than can be contained in the |N | − r
bundles of A not included in A∗. Since Br contains the chores {1, 2, . . . , r} along

Maximin Shares Under Cardinality Constraints 33

Algorithm 6 Find (3/2)-MMS solution for single-category instance

Input: An ordered instance I = 〈N,M, V, 〈C1, k1〉〉 with |M | > |N |, µi ≤ −1,
vi(Br) ≥ −r (from Lemma 10), vi(1) > −1, and vi(|N | + 1) > −1/2 for every i ∈ N ,
r ∈ {1, 2, . . . , |N |}
Output: Allocation A consisting of each bundle B′

j allocated

1 let n = |N | let B′
1 = {1}, B′

2 = {2}, . . . , B′
n = {n}

2 for j = 1 up to n

3 if |M | > |N |
4 add the min(|M | − |N |, k1 − 1) worst chores in

M \ (B′
j ∪ B′

j+1 ∪ · · · ∪ B′
n) to B′

j

5 while vi(B
′
j) < −3/2 for all i ∈ N and M \ (B′

j ∪ B′
j+1 ∪ · · · ∪ B′

n) contains

a better chore than the worst chore in B′
j \ {j}

6 exchange the worst chore g ∈ B′
j \ {j} for the worst chore

g′ ∈ M \ (B′
j ∪B′

j+1 ∪ · · · ∪B′
n) with g < g′

7 while vi(B
′
j) < −3/2 for all i ∈ N

8 remove the worst chore g ∈ B′
j \ {j} from B′

j

9 find i ∈ N such that vi(B
′
j) ≥ −3/2

10 allocate B′
j to i and set N = N \ {i}, M = M \B′

j .

with max(0, |M | − (|N | − r)k1 − r) other chores, it follows that |Br| ≤ |A∗|.
Combined with the fact that the chores in Br \ {1, 2, . . . , r} are the chores in
M \ {1, 2, . . . , r} that provide the least disutility, we get that

vi(Br) = vi({1, 2, . . . , r}) + vi(Br \ {1, 2, . . . , r})
≥ vi({1, 2, . . . , r}) + vi(A

∗ \ {1, 2, . . . , r})
= vi(A

∗)

≥ rµi

⊓⊔
As was the case for goods, Lemma 10 allows us to, in polynomial time, scale
valuations such that our estimates of µi achieves the required accuracy for the
bag-filling style algorithm (Algorithm 6). Additionally, it provides a vital role in
showing that for some agent i ∈ N , the bundle created in Algorithm 6 contains
a sufficient number of chores when it is worth more than −3/2.

With Lemma 10 we can now prove that Algorithm 6 finds a (3/2)-approximate
MMS allocation for the instances that fulfills the input requirements.

Lemma 11. For an instance I of the fair allocation of chores problem under
cardinality constraints satisfying the requirements of Algorithm 6, Algorithm 6
finds a (3/2)-approximate MMS allocation in polynomial time.

Proof. To show that the algorithm finds a (3/2)-approximate MMS allocation
in polynomial time, we wish to show that (i) any B′

j allocated is feasible, (ii) all

34 H. Hummel and M. L. Hetland

chores are allocated, (iii) there is always an agent i ∈ N with vi(B
′
j) ≥ −3/2,

and (iv) the algorithm finishes in polynomial time.

Feasible bundles

To show (i) it suffice to show that |B′
j | ≤ k1 at any point during the algorithm.

Initially this holds, as the instance I is assumed to have at least one feasible
allocation and each chore must be allocated, hence k1 > 1. Further, on line 4, at
most k1 − 1 chores are added to B′

j . Since |B′
j | = 1 before this line, the size of

B′
j remains at most k1. In the first loop (line 5), the size of B′

j does not change,
as each iteration exchanges one good in B′

j for one outside of B′
j . In the second

loop (line 7), chores are removed from B′
j and the size of B′

j decreases. Hence,
|B′

j | ≤ k1, which guarantees that B′
j is feasible when allocated and (i) holds.

At the end of iteration j, vi(B
′
j) ≥ −3/2 for an i ∈ N

As vi(g) > −1 for all i ∈ N and g ∈ M , we know that vi({j}) ≥ −1. Since the
second loop (line 7) removes one and one chore from B′

j , except for j, B
′
j must at

some point be worth more than −3/2 to some agent i ∈ N . Otherwise, B′
j would

become {j}, which is worth at least −1 > −3/2 to all agents in N . Consequently,
every bundle allocated is worth no less than −3/2 to the agent receiving it and
a bundle is allocated in every iteration.

All chores are allocated

Showing that all of the chores are allocated boils down to showing that B′
j

contains a sufficiently large number of chores when allocated. To show that B′
j

has sufficient size, we will use a similar loop invariant argument as used to
show that a sufficient amount of value remained for single-category instances
of goods. Let Bj

r denote the collection consisting of {j, j + 1, . . . , r} and the
max(0, |M |−(n−r)k1−(r−j+1)) best chores inM at the start of iteration j. In
other words,Bj

r contains {j, j+1, . . . , r} and if |M \{j, j+1, . . . , r}| > (n−r)k1,
Bj

r contains the exact number of chores needed so that |M \ Bj
r | ≤ (n − r)k1.

These additional chores are the best (least disutility) remaining chores. Note
that if |M | ≤ k1|N | after iteration j − 1, then by definition |Bj

r | ≤ (r− j + 1)k1.
We wish to show that the two following properties hold for Bj

r for all r ∈
{1, 2, . . . , n} and j ≤ n:

1. vi(B
j
r) ≥ −(r − j + 1) for all i ∈ N

2. |Bj
r | ≤ k1(r − j + 1)

Specifically, this would mean that when r = j, then vi(B
j
r) ≥ −1 for all i ∈ N and

|M \ Bj
r | ≤ |N \ {i}|k1. In other words, the bundle Bj

r is such that if Bj
r is

allocated, then after allocation there remains at most as many chores as can be

Maximin Shares Under Cardinality Constraints 35

given to the remaining agents and the bundle may be given to any one of the
agents without violating the MMS approximation guarantee. Especially, when
j = n, this would mean that all remaining chores can and will be allocated to
the remaining agent (line 4 will for j = n add all chores in M to B′

j if |M | ≤ k1).

Notice how Bj
r = Br when j = 1. Consequently, by Lemma 10 we have

vi(B
1
r) ≥ −r. Additionally, since |M | ≤ nk1 at the start,

|B1
r | = r +max(|M | − (n− r)k1 − r, 0) ≤ r + nk1 − (n− r)k1 − r = rk1

Thus, the conditions hold for j = 1. Assume for some j < n that they hold for all
r ≥ j. We wish to show that they hold for j′ = j+1 and all r ≥ j′. For 2., notice
that if B′

j is not modified in the second loop (line 7), then either |B′
j | = |M | −

|N |+1 and B′
j contains all chores in M \ {j+1, j+2, . . . , n}, or |B′

j | = k1. In the
first case, |M \B′

j | = |{j′, j′ +1, . . . , r}| = r− j′ +1 ≤ k1|N \ {i}|. In the second

case, since |Bj
j | ≤ k1, |M | ≤ |N |k1 and |M \B′

j | ≤ |N \ {i}|k1. Consequently, we
know |Bj′

r | ≤ k1(r − j′ + 1) in either case.
If B′

j is modified in the second loop, then note that before the first iteration
of the loop, B′

j consists of j and the min(|M | − |N |, k1 − 1) best chores in M .
This is the exact same construction as Bj

j , except that B
j
j contains |Bj

j | − 1 ≤
min(|M | − |N |, k1 − 1) of the best chores in M . Since the loop removes the
worst chore in B′

j \ {j} in each iteration, B′
j will turn into Bj

j at some point.
Since vi(B

j
j) ≥ −1, |B′

j | ≥ |Bj
j | when the second loop finishes. By definition,

|M \B′
j | ≤ |M \Bj

j | ≤ k1(n− j) = k1(|N \ {i}) and 2. holds in all cases.
For 1. first note that any change performed in the first or the second loop

(lines 5 and 7) either removes a chore in M \ {1, 2, . . . , n} from B′
j or exchanges

a chore from that subset of M for another in the same subset. That is, the value
of B′

j changes by at most 1/2 in each operation. Thus, either vi′ (B
′
j) < −1 for

all i′ ∈ N or B′
j is not modified in either loop.

If B′
j is modified in the last loop (line 7), then since Bj

r \ {j, j+1, . . . , r} and
B′

j \ {j} both consist of some number of the best chores in M , either B′
j ⊆ Bj

r

or (Bj
r \ {j + 1, j + 2, . . . , r}) ⊆ B′

j . In the first case,

vi′ (B
j′

r) = vi′(B
j
r)− vi′ (B

′
j) ≥ −(r − j + 1)− (−1) = −(r − j′ + 1)

for all i′ ∈ N \ {i}. In the second case, Bj′

r = {j′, j′ + 1, . . . , r} and vi′(B
j′

r) ≥
−(r − j′ + 1) since vi′(g) ≥ −1 for g ∈ M .

If B′
j is not modified in the second loop, then we know that either |B′

j | <
k1 andM \B′

j = {j′, j′+1, . . . n} or |B′
j | = k1. In the first case, we have as earlier

Bj′

r = {j′, j′ +1, . . . r} and vi(B
j′

r) ≥ −(r− j′ + 1). In the second case, if |Bj
r | <

k1 − 1 + (r − j + 1), then Bj′

r = {j′, j′ + 1, . . . , n} and vi′ (B
j′

r) ≥ −(r − j′ + 1).
Otherwise, we know that by the way the chores are exchanged in the loop, we
always select the worst g′ ∈ M \ (B′

j ∪ B′
j+1 ∪ · · · ∪B′

n) that is better than the
chore replaced. In other words, there is no chore in M \B′

j that is both better
than and worse than two distinct chores in B′

j \ {j}. Thus, either B′
j ⊆ Bj

r or
there is no chore g ∈ B′

j such that there is g′ ∈ Bj
r \ {j, j +1, . . . , r} with g′ < g.

In other words, B′
j \ {j} contains k1 − 1 chores such that for g ∈ B′

j \ {j}, g is

36 H. Hummel and M. L. Hetland

either worse than the chores in Bj
r \ {j, j + 1, . . . , r} or B′

j contains all worse
chores in Bj

r \ {j, j + 1, . . . , r}. Consequently, since |Bj
r | ≤ k1(r − j + 1), the

k1 chores removed from Bj
r to create Bj′

r are j and the k1 − 1 worst chores in
Bj

r \ {j, j + 1, . . . , r}. Due to the ordered instance, these k1 chores must be at
least 1/(r − j + 1) of the disutility in Bj

r . Consequently,

vi′(B
j′

r) ≥
(

1− 1

r − j + 1

)

vi′ (B
j
r) ≥

r − j

r − j + 1
· −(r − j + 1) = −(r − j′ + 1)

for all i′ ∈ N \ {i}. Consequently, 1. holds and it follows that (ii) holds.

Polynomial run time

It remains to show that (iv) holds, namely that the algorithm run in polynomial
time. Since (i), (ii) and (iii) hold, it follows that the algorithm will not be stuck
in any loop without any operations to perform. Further, since j is bounded in
the number of agents, it suffice to show that each iteration of the outer loop can
be performed in polynomial time. Since each iteration of the first loop improves
the worst chore in B′

j , the number of iterations of this loop is at most |M |. In
the second loop, a chore is removed from B′

j in each iteration. Consequently, the
loop can at most have |B′

j \ {j}| ≤ |M | iterations. Since each of the individual
operations can be performed in polynomial time, it therefore follows that each
iteration of the outer loop can be performed in polynomial time and (iv) holds.

⊓⊔

Proof (for Theorem 13). To show that 3/2-approximate MMS allocations can
be found in polynomial time, we will show that in polynomial time, I can either
be converted into an instance that Algorithm 6 accepts or a 3/2-approximate
MMS allocation can trivially be found. First, note that if vi(M) = 0, for some
agent i ∈ N , then agent i can be allocated the worst k1 chores, as agent i assigns
each of these a value of 0. The instance without i and these chores is obviously
feasible and one in which the MMS of each agent is no worse than in I. Thus,
any i with vi(M) = 0 can be reduce away, and we can assume that vi(M) < 0 for
each remaining agent i ∈ N . If |M | ≤ |N |, then any allocation that gives each
agent at most one chore is an MMS allocation. Such an allocation can trivially
be found in linear time.

If |M | > |N |, the only change needed for I is to rescale the valuations of the
agents. First, by Theorem 9, we can for each agent i ∈ N rescale i’s valuations
so that vi(M) = |N | which guarantees µi ≤ −1. Further, by Theorem 11 if
vi(1) < −1, then adjusting i’s valuations so that vi(1) = −1 maintains µi ≤ −1.
If vi(|N |+1) < −1/2, Theorem 11 also guarantees that µi ≤ −1 if we rescale i’s
valuations so that vi(|N |+1) = −1/2. Similarly, by Lemma 10 if vi(Br) < −r for
some r ∈ {1, 2, . . . , |N |}, then i’s valuations can be rescaled so that vi(Br) = −r
while still guaranteeing µi ≤ −1. Since each rescale increases vi(M) and all
the properties required for Algorithm 6 require the value of a set of chores to
be above a certain threshold, each further rescale does not break any one of

Maximin Shares Under Cardinality Constraints 37

the properties that already hold. Thus, after checking all the cases above, all
conditions of Algorithm 6 hold. Since both r and i are bound in the number of
agents, the conversion can be performed in polynomial time. ⊓⊔

G Omitted Examples

Example 1 (Failing valid reduction with two goods). As mentioned in Section 4,
even for instances with a single category, certain types of valid reductions from
unconstrained fair allocation fail to be applicable. One of these is the valid
reduction created by constructing a bundle B consisting of two goods such that
vi(B) ≥ αµi for an agent i and vi′ ≤ µi′ for all other agents i

′. In unconstrained
fair allocation, this is a valid reduction since for any agent i′, one can easily
show that their MMS remains at least as high. This follows from the fact that
the goods in B are contained in either one or two bundle in the agent’s MMS
partition. Therefore, there is either already n− 1 bundles valued at µi′ or higher,
or the two bundles containing goods fromB can be combined to have a value of at
least µi′ . Under cardinality constraints, this last step could lead to infeasibility,
and the reduction therefore does not work, as seen below.

Let I be an instance of the fair allocation problem under cardinality con-
straints, with a single category C1 with threshold k1 = 5, 11 goods and 3 agents
with identical valuation functions given in Table 1. The MMS of each agent is 1,
as vi(M) = 3 and the partition (〈1, 8, 9〉, 〈2, 10, 11〉, 〈3, 4, 5, 6, 7〉) contains three
bundles with a value of exactly 1. If α ≤ 19/20, then the bundle B = 〈2, 7〉 would
constitute a valid reduction for any agent in the unconstrained setting. However,
with the given threshold for C1, removing B and an agent i would leave us with
an instance where the MMS of the agents would be 37/40 with the MMS parti-
tion (〈1, 8, 9, 10〉, 〈3, 4, 5, 6, 11〉). If 37/40 < α ≤ 19/20, this would even make it
impossible to achieve an α-approximate MMS allocation.

j 1 2 3 4 5 6 7 8 9 10 11

vi
3

4

3

4

1

5

1

5

1

5

1

5

1

5

1

8

1

8

1

8

1

8

Table 1. Valuations in Example 1

	Maximin Shares Under Cardinality Constraints

