Skip to main content

Materials Science and Engineering Education Based on Reality-Virtuality Technologies

  • Conference paper
  • First Online:
Methodologies and Intelligent Systems for Technology Enhanced Learning, 12th International Conference (MIS4TEL 2022)

Abstract

The use of reality-virtuality technologies (RVTs) in the field of engineering education has shown a growing trend for more than a decade. The teaching of Materials Science and Engineering (MSE) is no stranger to this phenomenon, and there are numerous examples of it. In order to better understand how RVTs are implemented in MSE teaching, this review presents an analysis that has been carried out after a systematic search in three different databases. This systematic search aimed to find academic works describing tools based on RVTs to improve the teaching-learning process of MSE. The results obtained provide an overall picture of how RVTs have been used since 2010 in teaching MSE: (i) virtual reality (immersive and non-immersive) is the most widely used technology, followed at a considerable distance by augmented reality, while mixed reality is a technology that is rarely used currently; (ii) the field of MSE on which most papers have focused is Materials structure, processing, and properties. Based on this information, it is possible to open up lines of research that have not been explored until now.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mena Mamani, N.: Machine learning techniques and polygenic risk score application to prediction genetic diseases. Adv. Distrib. Comput. Artif. Intell. J. 9, 5–14 (2020)

    Google Scholar 

  2. Basarslan, M.S., Kayaalp, F.: Sentiment analysis with machine learning methods on social media. Adv. Distrib. Comput. Artif. Intell. J. 9, 5–15 (2020)

    Google Scholar 

  3. Mishra, A., Pathak, T.: Estimation of grain size distribution of friction stir welded joint by using machine learning approach. Adv. Distrib. Comput. Artif. Intell. J. 10, 99–110 (2020)

    Google Scholar 

  4. Karapinar Senturk, Z., Bakay, M.S.: Machine learning based hand gesture recognition via EMG data. Adv. Distrib. Comput. Artif. Intell. J. 10 (2021)

    Google Scholar 

  5. Ali, Z., ur Rehman, I., Jaan, Z.: An empirical analysis on software development efforts estimation in machine learning perspective. Adv. Distrib. Comput. Artif. Intell. J. 10, 227–240 (2021)

    Google Scholar 

  6. Mateos García, N.: Multi-agent system for anomaly detection in industry 4.0 using machine learning techniques. Adv. Distrib. Comput. Artif. Intell. J. 8, 33–40 (2019)

    Google Scholar 

  7. Castelltort, A., Chabert, A., Hersog, N., Laurent, A., Sala, M.: Fuzzy rules based solution for system administration security management via a blockchain. Adv. Intell. Syst. Comput. 1010, 71–78 (2020)

    Google Scholar 

  8. Ciatto, G., Maffi, A., Mariani, S., Omicini, A.: Smart contracts are more than objects: pro-activeness on the blockchain. Adv. Intell. Syst. Comput. 1010, 45–53 (2020)

    Google Scholar 

  9. Munoz, D.J., Constantinescu, D.A., Asenjo, R., Fuentes, L.: ClinicAppChain: a low-cost blockchain hyperledger solution for healthcare. Adv. Intell. Syst. Comput. 1010, 36–44 (2020)

    Google Scholar 

  10. Odelu, V.: IMBUA: identity management on blockchain for biometrics-based user authentication. Adv. Intell. Syst. Comput. 1010, 1–10 (2020)

    Google Scholar 

  11. Rosa, J.: On value preservation with distributed ledger technologies, intelligent agents, and digital preservation. Adv. Intell. Syst. Comput. 1010, 145–152 (2020)

    Google Scholar 

  12. Sousa, H., Pinto, A.: Blockchain based informed consent with reputation support. Adv. Intell. Syst. Comput. 1010, 54–61 (2020)

    Google Scholar 

  13. Wunderlich, S., Saive, D.: The electronic bill of lading: challenges of paperless trade. Adv. Intell. Syst. Comput. 1010, 93–100 (2020)

    Google Scholar 

  14. Casado-Vara, R., Novais, P., Gil, A., Prieto, J., Corchado, J.: Distributed continuous-time fault estimation control for multiple devices in IoT networks. IEEE Access 7, 11972–11984 (2019)

    Article  Google Scholar 

  15. Casado-Vara, R., Martin-del Rey, A., Affes, S., Prieto, J., Corchado, J.: IoT network slicing on virtual layers of homogeneous data for improved algorithm operation in smart buildings. Future Gener. Comput. Syst. 102, 965–977 (2020)

    Article  Google Scholar 

  16. Costa, Â., Novais, P., Corchado, J., Neves, J.: Increased performance and better patient attendance in an hospital with the use of smart agendas. Log. J. IGPL 20, 689–698 (2012)

    Article  MathSciNet  Google Scholar 

  17. Chamoso, P., González-Briones, A., De La Prieta, F., Venyagamoorthy, G., Corchado, J.: Smart city as a distributed platform: toward a system for citizen-oriented management. Comput. Commun. 152, 323–332 (2020)

    Article  Google Scholar 

  18. González-Briones, A., Chamoso, P., De La Prieta, F., Demazeau, Y., Corchado, J.: Agreement technologies for energy optimization at home. Sensors 18 (2018)

    Google Scholar 

  19. Saposnik, G., et al.: Effectiveness of virtual reality using Wii gaming technology in stroke rehabilitation: a pilot randomized clinical trial and proof of principle. Stroke 41, 1477–1484 (2010)

    Article  Google Scholar 

  20. Berg, L.P., Vance, J.M.: Industry use of virtual reality in product design and manufacturing: a survey. Virtual Real. 21, 1–17 (2017)

    Article  Google Scholar 

  21. Muhanna, M.A.: Virtual reality and the CAVE: taxonomy, interaction challenges and research directions. King Saud Univ. Comput. Inf. Sci. 27, 344–361 (2015)

    Google Scholar 

  22. Jensen, L., Konradsen, F.: A review of the use of virtual reality head-mounted displays in education and training. Educ. Inf. Technol. 23, 1515–1529 (2018)

    Article  Google Scholar 

  23. Mosher, M.A., Carreon, A.C.: Teaching social skills to students with autism spectrum disorder through augmented, virtual and mixed reality. Res. Learn. Technol. 29, 2626 (2021)

    Article  Google Scholar 

  24. Carmigniani, J., Furht, B., Anisetti, M., Ceravolo, P., Damiani, E., Ivkovic, M.: Augmented reality technologies, systems and applications. Multimed. Tools. Appl. 51, 341–377 (2011)

    Article  Google Scholar 

  25. Hoyer, W.D., Kroschke, M., Schmitt, B., Kraume, K., Shankar, V.: Transforming the customer experience through new technologies. J. Interact. Mark. 51, 57–71 (2020)

    Article  Google Scholar 

  26. Collins, J., Regenbrecht, H., Langlotz, T.: Visual coherence in mixed reality: a systematic enquiry. Presence Teleoper. Virtual Environ 26, 16–41 (2017)

    Google Scholar 

  27. Vergara, D., Antón-Sancho, Á., Extremera, J., Fernández-Arias, P.: Assessment of virtual reality as a didactic resource in higher education. Sustainability 13 (2021)

    Google Scholar 

  28. Vergara, D., Rubio, M.P., Lorenzo, M.: On the design of virtual reality learning environments in engineering. Multimodal Technol. Interact. 1, 11 (2017)

    Article  Google Scholar 

  29. Vergara, D., Extremera, J., Rubio, M.P., Dávila, L.P.: The proliferation of virtual laboratories in educational fields. Adv. Distrib. Comput. Artif. Intell. J. 9, 85–97 (2020)

    Google Scholar 

  30. Aljojo, N., et al.: Kids’ atlas application to learn about geography and maps. Adv. Distrib. Comput. Artif. Intell. J. 9(2), 33–48 (2020)

    Google Scholar 

  31. Vergara, D., Extremera, J., Rubio, M.P., Dávila, L.P.: Meaningful learning through virtual reality learning environments: a case study in materials engineering. Appl. Sci. 9, 4625 (2019)

    Article  Google Scholar 

  32. Vergara, D., Fernández-Arias, P., Extremera, J., Dávila, L.P., Rubio, M.P.: Educational trends post COVID-19 in engineering: virtual laboratories. Mater. Today Proc. 49, 155–160 (2022)

    Article  Google Scholar 

  33. Ospina-Bohórquez, A., Rodríguez-González, S., Vergara-Rodríguez, D.: On the synergy between virtual reality and multi-agent systems. Sustainability 13 (2021)

    Google Scholar 

  34. Kitchenham, B.A., Budgen, D., Pearl Brereton, O.: Using mapping studies as the basis for further research – a participant-observer case study. Inf. Softw. Technol. 53, 638–651 (2011)

    Article  Google Scholar 

  35. Petersen, K., Vakkalanka, S., Kuzniarz, L.: Guidelines for conducting systematic mapping studies in software engineering: an update. Inf. Softw. Technol. 64, 1–18 (2015)

    Article  Google Scholar 

  36. Materials Research Society – 2021 MRS Fall Meeting & Exhibit. mrs.org/fall2021. Accessed 01 July 2021

    Google Scholar 

  37. Doblack, B.N., Flores, C., Matlock, T., Dávila, L.P.: The emergence of immersive low-cost 3D virtual reality environments for interactive learning in materials science and engineering. Mater. Res. Soc. Symp. Proc. 1320, mrsf10-1320-xx04-01 (2011)

    Google Scholar 

  38. Martinez, H., von Deimling, C., Ulbrich, H., von Eisenhart-Rothe, R., Burgkart, R.: Real-time 3D visualization in an open architecture of a robotic application in the biomechanics. In: 2012 IEEE International Conference on Robotics and Biomimetics, ROBIO 2012, pp. 1458–1463. IEEE (2012)

    Google Scholar 

  39. Restivo, M.T., Lopes, A.M., Padilla, L., Chaves, P., Duarte, T.: Haptic system for determining the young modulus of materials. Int. J. Online Eng. 9, 68–70 (2013)

    Article  Google Scholar 

  40. Ari-Gur, P., et al.: Transforming undergraduate engineering education with 3D virtual reality laboratory. In: 120th ASEE Annual Conference and Exposition. ASEE (2013)

    Google Scholar 

  41. Doblack, B.N., Allis, T., Dávila, L.P.: Novel 3D/VR interactive environment for MD simulations, visualization and analysis. J. Vis. Exp. 94, e51384 (2014)

    Google Scholar 

  42. Liou, W.-K., Bhagat, K.K., Chang, C.-Y.: Beyond the flipped classroom: a highly interactive cloud-classroom (HIC) embedded into basic materials science courses. J. Sci. Educ. Technol. 25(3), 460–473 (2016). https://doi.org/10.1007/s10956-016-9606-8

    Article  Google Scholar 

  43. Vergara, D., Rubio, M.P., Lorenzo, M.: New approach for the teaching of concrete compression tests in large groups of engineering students. J. Prof. Issues Eng. Educ. Pract. 143, 05016009 (2017)

    Article  Google Scholar 

  44. Vergara, D., Lorenzo, M., Rubio, M.P.: Virtual environments in materials science and engineering: the students’ opinion. In: Handbook of Research on Recent Developments in Materials Science and Corrosion Engineering Education, 1st edn, pp. 148–165. IGI Global, Hershey (2015)

    Google Scholar 

  45. Ortelt, T.R., Ruider, E.: Virtual lab for material testing using the oculus rift. In: 4th Experiment@International Conference, exp.at 2017, pp. 145–146. IEEE (2017)

    Google Scholar 

  46. García-Hernández, R.J., Kranzlmüller, D.: Virtual reality toolset for material science: NOMAD VR tools. In: De Paolis, L.T., Bourdot, P., Mongelli, A. (eds.) AVR 2017. LNCS, vol. 10324, pp. 309–319. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60922-5_25

    Chapter  Google Scholar 

  47. Caro, V., Carter, B., Dagli, S., Schissler, M., Millunchick, J.: Can virtual reality enhance learning: a case study in materials science. In: 48th Frontiers in Education Conference, FIE 2018, 8659267. IEEE (2018)

    Google Scholar 

  48. Banic, A., Money, J.H., Khadka, R.: Evaluation of scientific workflow effectiveness for a distributed multi-user multi-platform support system for collaborative visualization. In: ACM International Conference Proceeding Series, Proceedings of the 2018 Practice and Experience in Advanced Research Computing Conference: Seamless Creativity, PEARC 2018, 61. ACM (2018)

    Google Scholar 

  49. Grodotzki, J., Ortelt, T.R., Tekkaya, A.E.: Remote and virtual labs for engineering education 4.0: achievements of the ELLI project at the TU Dortmund University. In: Wang, L. (ed.) Procedia Manufacturing, Proceedings of the 46th SME North American Manufacturing Research Conference, NAMRC 46, vol. 26, pp. 1349–1360. Elsevier (2018)

    Google Scholar 

  50. Mansoor, B., Makki, M.J., Al-Thani, D.: Use of mixed reality tools in introductory materials science courses. In: 125th ASEE Annual Conference and Exposition, 22405. ASEEE (2018)

    Google Scholar 

  51. Iqbal, R., Kuttenkuler, T., Brewer, C., Sakidja, R.: A framework for visualizing the dynamic events of carbon nanocomposites using virtual and augmented reality tools. In: Obaidat, M.S., et al. (eds.) 16th International Joint Conference on e-Business and Telecommunications, ICETE 2019, pp. 337–342. SciTePress (2019)

    Google Scholar 

  52. Tarng, W., Chen, C.J., Lee, C.Y., Lin, C.M., Lin, Y.J.: Application of virtual reality for learning the material properties of shape memory alloys. Appl. Sci. 9, 580 (2019)

    Article  Google Scholar 

  53. Greenwald, S.W., McDowell, G., Corning, W., Devarakonda, A., Ye, L., Devarakonda, A.: Crystal VR: creating an immersive scientific tool for learning and research. In: 2019 IEEE International Conference on Engineering, Technology and Education, TALE 2019, 9225971. IEEE (2019)

    Google Scholar 

  54. Bardella, F., Rodrigues, A.M., Leal, R.M.: CrystalWalk: an educational interactive software for synthesis and visualization of crystal structures. J. Mater. Educ. 41, 157–180 (2019)

    Google Scholar 

  55. Extremera, J., Vergara, D., Rubio, M.P., Gómez, A.I.: Design of virtual reality learning environments: step-by-step guidance. In: 12th Annual International Conference of Education, Research and Innovation, ICERI 2019, pp. 1285–1290. IATED (2019)

    Google Scholar 

  56. García-Hernández, R.J., Kranzlmüller, D.: NOMAD VR: multiplatform virtual reality viewer for chemistry simulations. Comput. Phys. Commun. 237, 230–237 (2019)

    Article  Google Scholar 

  57. Vergara, D., Sánchez, M., Garcinuño, A., Rubio, M.P., Extremera, J., Gómez, A.I.: Spatial comprehension of crystal lattices through virtual reality applications. In: 12th Annual International Conference of Education, Research and Innovation, ICERI 2019, pp. 1291–1295. IATED (2019)

    Google Scholar 

  58. Rubio, M.P., Vergara, D., Rodríguez, S., Extremera, J.: Virtual reality learning environments in materials engineering: rockwell hardness test. In: Di Mascio, T., et al. (eds.) MIS4TEL 2018. AISC, vol. 804, pp. 106–113. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-98872-6_13

    Chapter  Google Scholar 

  59. Extremera, J., Vergara, D., Rubio, M.P., Dávila, L.P., De la Prieta, F.: Effects of time in virtual reality learning environments linked with materials science and engineering. In: Vittorini, P., Di Mascio, T., Tarantino, L., Temperini, M., Gennari, R., De la Prieta, F. (eds.) MIS4TEL 2020. AISC, vol. 1241, pp. 1–9. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-52538-5_1

    Chapter  Google Scholar 

  60. Batra, J.S., Richardson, R., Webb, R.: How can instructors strengthen students’ motivation to learn complex 3D concepts in an engineering classroom? In: 2020 IEEE Frontiers in Education Conference, FIE 2020, 9274193. IEEE (2020)

    Google Scholar 

  61. Müssig, J., Clark, A., Hoermann, S., Loporcaro, G., Loporcaro, C., Huber, T.: Imparting materials science knowledge in the field of the crystal structure of metals in times of online teaching: a novel online laboratory teaching concept with an augmented reality application. J. Chem. Educ. 97, 2643–2650 (2020)

    Article  Google Scholar 

  62. Hain, A., Motaref, S.: Implementing interactive 3-D models in an entry level engineering course to enhance students’ visualization. In: 2020 ASEE Virtual Annual Conference, ASEE 2020, 825. ASEE (2020)

    Google Scholar 

  63. Vergara, D., Extremera, J., Rubio, M.P., Dávila, L.P.: The technological obsolescence of virtual reality learning environments. Appl. Sci. 10, 915 (2020)

    Article  Google Scholar 

  64. Bourguet, M.L., Wang, X., Ran, Y., Zhou, Z., Zhang, Y., Romero-Gonzalez, M.: Virtual and augmented reality for teaching materials science: a students as partners and as producers project. In: Mitsuhara, H., et al. (eds.) 2020 IEEE International Conference on Teaching, Assessment, and Learning for Engineering, TALE 2020, pp. 452–459. IEEE (2020)

    Google Scholar 

  65. Srinivasa, A.R., Jha, R., Ozkan, T., Wang, Z.: Virtual reality and its role in improving student knowledge, self-efficacy, and attitude in the materials testing laboratory. Int. J. Mech. Eng. Educ. 49, 382–409 (2020)

    Article  Google Scholar 

  66. Bourguet, M.L., Romero-Gonzalez, M.: Work-in-progress—teaching invisible phenomena and virtual experiments: immersion or augmentation? In: Economou, D., et al. (eds.) 7th International Conference of the Immersive Learning Research Network, iLRN 2021, 9459308. IEEE (2021)

    Google Scholar 

Download references

Acknowledgments

This research has been supported by the project “Intelligent and sustainable mobility supported by multi-agent systems and edge computing (InEDGEMobility): Towards Sustainable Intelligent Mobility: Blockchain-based framework for IoT Security”, Reference: RTI2018-095390-B-C32, financed by the Spanish Ministry of Science, Innovation and Universities (MICINN), the State Research Agency (AEI) and the European Regional Development Fund (FEDER).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Extremera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Extremera, J., Vergara, D., Rodríguez, S. (2023). Materials Science and Engineering Education Based on Reality-Virtuality Technologies. In: Temperini, M., et al. Methodologies and Intelligent Systems for Technology Enhanced Learning, 12th International Conference. MIS4TEL 2022. Lecture Notes in Networks and Systems, vol 580. Springer, Cham. https://doi.org/10.1007/978-3-031-20617-7_7

Download citation

Publish with us

Policies and ethics