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Abstract. The notion of string attractor has been introduced in [13] in
the context of Data Compression and it represents a set of positions of
a finite word in which all of its factors can be “attracted”. The smallest
size γ∗ of a string attractor for a finite word is a lower bound for several
repetitiveness measures associated with the most common compression
schemes, including BWT-based and LZ-based compressors. The combi-
natorial properties of the measure γ∗ have been studied in [21]. Very
recently, a complexity measure, called string attractor profile function,
has been introduced for infinite words, by evaluating γ∗ on each prefix.
Such a measure has been studied for automatic sequences and linearly
recurrent infinite words [26]. In this paper, we study the relationship
between such a complexity measure and other well-known combinatorial
notions related to repetitiveness in the context of infinite words, such
as the factor complexity and the recurrence. Furthermore, we introduce
new string attractor-based complexity measures, in which the structure
and the distribution of positions in a string attractor of the prefixes of
infinite words are considered. We show that such measures provide a
finer classification of some infinite families of words.

Keywords: String attractor · Sturmian word · Recurrent word · Mor-
phism · Repetitiveness measure · Factor complexity

1 Introduction

Compressibility and repetitiveness are two fundamental aspects in processing
huge text collections [24]. In many application domains, massive and highly
repetitive data needs to be stored, analysed and queried. The main purpose
of compressed indexing data structures is to store the texts and the structures
needed to handle them by requiring space close to the size of the compressed data
[22]. In such a context, finding good measures able to capture the repetitiveness
of texts is strictly related to having effective parameters to evaluate the perfor-
mance, both in terms of time and space, of such compressed data structures. For
this reason, some of the most widely used repetitiveness measures are associ-
ated with effective compression schemes. For instance, we recall the number z of
phrases in the LZ77 parsing and the number r of equal-letter runs produced by
the Burrows-Wheeler Transform [23]. In such a framework, Kempa and Prezza
proposed in [13] a repetitiveness measure that, instead of being associated with
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a specific compressor, is related to some combinatorial properties of the text
with the aim of unifying existing compressor-based measures. A string attractor
Γ for a text w is a set of positions in w such each factor of w must have an
occurrence crossing some position in Γ . Intuitively, the more repetitive the text,
the lower the number of positions of its attractor. The measure γ∗(w) is the size
of a string attractor of smallest size for w. On the one hand, it has been proved
that γ∗ is a lower bound to all other compressor-based repetitiveness measure,
on the other it is NP-complete to find the smallest attractor size γ∗ for a given
text w. Combinatorial properties of the measure γ∗ for finite words have been
explored in [21].

In Combinatorics on words, the notion of repetitiveness has been declined in
several ways and under a variety of aspects. For instance, the factor complexity
function px of an infinite word x is a function that counts, for any n > 0, the
number of distinct factors of length n. Intuitively, the lower the factor complexity,
the more repetitive an infinite word is. That is, the most repetitive words one
can think of are those obtained by repeating the same factor infinitely many
times, i.e. periodic words, for which factor complexity takes on a constant value
definitively. Among aperiodic words, Sturmian words are the infinite words with
minimal factor complexity. An infinite word x is recurrent if each factor of x
occurs infinitely often. The recurrence function Rx for an infinite word x, gives
for each n, the size of the smallest window containing each factor of x of length
n, whatever such a window is located in x. Intuitively, it is strictly related to the
maximum gap between successive occurrences of any factor, when all factors of
length n are considered. If such a gap is finite for each n, then the word is called
uniformly recurrent. For the linearly recurrent words such a gap grows at most
linearly with n.

Very recently, a bridge between these two different approaches has been pre-
sented in [26], where the string attractor profile function sx has been introduced.
It measures, for each n, the size of a string attractor of smallest size for the prefix
of length n of an infinite word x. The behaviour of sx has been studied when x is
linearly recurrent word or an automatic sequence, whose symbols can be defined
through a finite automaton [1].

In this paper, we explore the relationship between the string attractor profile
function of an infinite word x and the other combinatorial notions of repetitive-
ness. In particular, we prove that the values that sx assumes for infinitely many
n give an upper bound to the factor complexity. On the other hand, we face
the problem of searching for the necessary conditions, in terms of repetitiveness
combinatorial properties, for the string attractor profile function to take values
bounded by a constant. Moreover, we study the behavior of the string attrac-
tor profile function for infinite words that are fixed point of a morphism, which
represent a mathematical mechanism to generate repetitive words.

Another contribution of this paper is to introduce two new complexity mea-
sures based on the notion of string attractor, which allow to obtain a finer clas-
sification of some infinite families of words. More in detail, we define the string
attractor span complexity (denoted by spanx) and the string attractor leftmost
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complexity (denoted by lmx) of an infinite word x, which are related for each
n > 0 to the distribution of the positions within a string attractor of the prefix
of x of length n. These measures make it possible to distinguish infinite words
that are indistinguishable under the action of the string profile function. In ad-
dition to exploring the relations between such measures and the periodicity and
recurrence properties of an infinite word, we consider the class of infinite words
for which the span complexity takes on a constant value infinitely many times.
This allows us to obtain a new characterization of Sturmian words that are the
infinite words with span complexity function equal to 1 for infinitely many n.
More in general, we prove that if the span complexity spanx assumes a constant
value for each n > 0, the aperiodic infinite word x is a quasi-Sturmian word.
Quasi-Sturmian words represent the simplest generalization of Sturmian words
in terms of factor complexity.

2 Preliminaries

Let Σ = {a1, a2, . . . , aσ} be a finite alphabet. We denote by Σ∗ the set of finite
words over Σ. An infinite word x = x1x2 . . . is an infinite sequence of characters
in Σ. Given a finite word w = w1w2 · · ·wn, we denote with |w| = n the length of
the word. The empty-word ε is the only string that verifies |ε| = 0. The reverse
of a word w is the word read from right to left, that is wR = wnwn−1 · · ·w1. A
finite word v is called factor of a word x (finite or infinite) if there exist i, j > 0
such that j−i+1 = |v| and x[i, j] = xixi+1 · · ·xj = v. We assume that x[i, j] = ε
if j < i. We denote by F (x) the set of all factors of x. The word u is a prefix
(resp. suffix ) of x if x = uy (resp. x = yu) for some word y. A factor u of x
is right special if there exist a, b ∈ Σ with a 6= b such that both ua and ub are
factors of x.

String attractor of a finite word A string attractor for a word w is a set of
positions in w such that all distinct factors of w have an occurrence crossing at
least one of the attractor’s elements. More formally, a string attractor of a finite
word w ∈ Σn is a set of γ positions Γ = {j1, . . . , jγ} such that every factor w[i, j]
of w has an occurrence w[i′, j′] = w[i, j] with jk ∈ {i′, i′ + 1, . . . , j′}, for some
jk ∈ Γ . We denote by γ∗(w) the size of a smallest string attractor for w. We
denote by alph(w) the set of the characters of Σ appearing in w, i.e. F (w) ∩Σ.
It is easy to see that γ∗(w) ≥ |alph(w)|.

Example 1. Let w = adcbaadcbadc be a word on the alphabet Σ = {a, b, c, d}.
The set Γ = {1, 4, 6, 8, 11} is a string attractor for w. Note that the set Γ ′ =
{4, 6, 8, 11} obtained from Γ by removing the position 1 is still a string attractor
for w, since all the factors that cross position 1 have a different occurrence that
crosses a different position in Γ . The positions of Γ ′ are underlined in

w = adcbaadcbadc.

Γ ′ is also a smallest string attractor since |Γ ′| = |Σ|. Then γ∗(w) = 4. Remark
that the sets {3, 4, 5, 11} and {3, 4, 6, 7, 11} are also string attractors for w. It
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is easy to verify that the set ∆ = {1, 2, 3, 4} is not a string attractor since, for
instance, the factor aa does not intersect any position in ∆.

Factor complexity Let x be an infinite word. The factor complexity function px
of x counts, for any positive integer n, all the distinct factors of x of length n,
i.e. px(n) = |F (x) ∩Σn|.

Periodicity Given a word x, a natural number p > 0 is called period of x if
xi = xj when i ≡ j mod p. An infinite word x is called ultimately periodic if
there exist u ∈ Σ∗ and v ∈ Σ+ such that x = uvω, i.e. x is the concatenation
of u followed by infinite copies of a non-empty word v. If u = ε, then x is called
periodic. An infinite word is aperiodic if it is not ultimately periodic.

Recurrence and appearance functions An infinite word x is said to be recurrent if
every factor that occurs in x occurs infinitely often in x. The recurrence function
Rx(n) gives, for each n, the least integer m (or ∞ if no such m exists) such that
every block ofm consecutive symbols in x contains at least an occurrence of each
factor of x of length n. An infinite word x is uniformly recurrent if Rx(n) < ∞
for each n > 0. Rx(n)−n+1 is the maximum gap between successive occurrences
of any factor, when all factors of length n are considered. If Rx(n) is linear, x
is called linearly recurrent. It is easy to see that an ultimately periodic word
x = uvω with u 6= ε is not recurrent. On the other hand, if x is periodic (the
case u = ε) then x is linearly recurrent. Therefore, a recurrent word is either
aperiodic or periodic. Given an infinite word x, Ax(n) denotes the length of the
shortest prefix containing all the factors of x of length n. The function Ax(n) is
called appearance function of x.

Remark 1. It is known that Ax(n) ≤ Rx(n) (see [1]). Moreover, for any infinite
word x and for each n > 0, since |Σ| is finite, Ax(n) is always defined and
Ax(n) ≥ px(n) + n− 1 = Ω(n).

Power freeness An infinite word x is said k-power free, for some k > 1, if for
every factor w of x, wk is not a factor of x. If for every factor w of x exists k
such that wk is not a factor of x, then x is called ω-power free.

Morphisms They represent a very interesting way to generate an infinite family
of words. Let Σ and Σ′ be alphabets. A morphism is a map ϕ from Σ∗ to Σ′∗

that obeys the identity ϕ(uv) = ϕ(u)ϕ(v) for all words u, v ∈ Σ∗. A morphism
ϕ is called prolongable on a letter a ∈ Σ if ϕ(a) = au with u ∈ Σ+. If for all
a ∈ Σ holds that ϕ(a) 6= ε, then the morphism ϕ is called non-erasing. Given a
non-erasing morphism ϕ prolongable on some a ∈ Σ, the infinite family of finite
words {a, ϕ(a), . . . , ϕi(a), . . .} are prefixes of a unique infinite word ϕ∞(a) =
limi7→∞ ϕi(a), that is called purely morphic word or fixed point of ϕ. A morphism
ϕ is called primitive if exists t > 0 such that b ∈ F (ϕt(a)), for every pair of
symbols a, b ∈ Σ. If exists k such that |ϕ(a)| = k for every a ∈ Σ, then the
morphism is called k-uniform.
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String attractor profile function Let x be an infinite word. For any n > 0, we
denote by sx(n) the size of a smallest string attractor for the prefix of x of length
n. The function sx is called string attractor profile function of x. Such a notion
has been introduced in [26].

Example 2. Let us consider the Thue-Morse word

t = 0110100110010110 · · · ,

that is the fixed point of the morphism 0 7→ 01, 1 7→ 10. It has been proved in
[26] (cf. also [16]) that st(n) ≤ 4 for any n > 0. Moreover, it is known that the
functions pt(n), Rt(n) and At(n) are Θ(n). See [1] for details.

3 String attractor profile function, factor complexity and

recurrence

In this section we explore the relationships among different functions that aim
to measure the repetitiveness of factors within infinite sequences of symbols.

The following theorem establishes a relationship among appearance, factor
complexity and string attractor profile functions. In particular, it shows that
upper bounds on sx can induce upper bounds on px.

Theorem 1. Let x be an infinite word. For all n > 0, one has

px(n) ≤ n · sx(Ax(n)).

Proof. Let us consider the value Ax(n) representing the length of the smallest
prefix of x containing all the factors of x of length n. Since the alphabet is finite,
the value Ax(n) is finite. By definition sx(Ax(n)) is the size of the smallest string
attractor of the prefix of length Ax(n). Therefore, each factor of x of length n
crosses at least one element of the string attractor. Since each element of the
string attractor is crossed by at most n distinct factors of x of length n, one has
px(n) ≤ n · sx(Ax(n)). ⊓⊔

From previous theorem, the following corollary can be deduced.

Corollary 1. Let x be an infinite word. If exists k > 0 such that sx(n) < k for
each n > 0, then px(n) ≤ n · k.

In other words, Corollary 1 states that if an infinite word has the string
attractor profile function bounded by some constant value, then it has at most
linear factor complexity. We know that, in general, the converse of Corollary 1
is not true. In fact, there are infinite words x such that the factor complexity
is linear and sx(n) is not bounded. For instance, in Example 3 we consider the
characteristic sequence c of the powers of 2.
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Example 3. Let us consider the characteristic sequence c of the powers of 2, i.e.
ci = 1 if i = 2j for some j ≥ 0, 0 otherwise.

c = 1101000100000001 · · · .

It is easy to see that c is aperiodic and not recurrent because the factor 11 has
just one occurrence. It is known that pc(n) and Ac(n) are Θ(n) ([1]). One can
prove that sc(n) = Θ(log n) ([15,21,26]).

We raise the following:

Question 1. Let x be an uniformly recurrent word such that px is linear. Is sx(n)
bounded by a constant value?

Remark that, by assuming a stronger hypothesis on the recurrence of x, a
positive answer to Question 1 can be given, as stated in the following theorem
proved in [26]. Such a result can be applied to describe the behaviour of the
string profile function st(n) for the Thue-Morse word t, as shown in Example 2.

Theorem 2 ([26]). Let x be an infinite word. If x is linearly recurrent (i.e.
Rx(n) = Θ(n)), then sx(n) = Θ(1).

The following proposition shows that also in case of ultimately periodic
words, the string attractor profile function assumes a constant value, definitely.

Proposition 1. Let x be an infinite word. If x is ultimately periodic, then
sx(n) = Θ(1).

Proof. Let u ∈ Σ∗ and v ∈ Σ+ such that x = uvω. Since every periodic word is
linearly recurrent, if u = ε by Theorem 2 the thesis holds. If u 6= ε, then for every
n > |u| we can use a bound on the size γ∗ with respect to the concatenation
provided in [21], which says that for any u, v ∈ Σ+, it holds that γ∗(uv) ≤
γ∗(u)+ γ∗(v) + 1. Therefore, sx(n) ≤ γ∗(u)+ svω (n− |u|)+ 1 ≤ |u|+ k′ +1. On
the other hand, for all the prefixes of length n ≤ |u| it holds that sx(n) ≤ |u| <
|u|+ k′+1. Since |u| and k′ are constant, we can choose k = |u|+ k′+1 and the
thesis follows. ⊓⊔

An interesting upper bound on the function sx can be obtained by assuming
that the appearance function is linear, as shown in [26] and reported in the
following theorem.

Theorem 3 ([26]). Let x be an infinite word. If Ax(n) = Θ(n), then sx(n) =
O(log n).

On the other hand, if the function sx is bounded by some constant value, the
property of power freeness can be deduced, as proved in the following theorem.

Proposition 2. Let x be an infinite word. If sx(n) = Θ(1), then x is either
ultimately periodic or ω-power free.
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Proof. By Proposition 1, the thesis holds for every ultimately periodic word. So,
let us assume x is aperiodic. By contraposition, suppose x is not ω-power free.
Then there exists a factor w of x such that, for every q > 0, wq is factor of x.
Moreover, x 6= uwω for every u ∈ Σ∗, otherwise x would be ultimately periodic.
It follows that we can write x = v0 ·

∏∞

i=1 w
qivi, with v0 ∈ Σ∗, and, for every

i ≥ 1, qi > 0 and vi ∈ Σ+ such that vi does not have w neither as prefix nor
as suffix. Observe that there exist infinitely many distinct factors of the form
vjw

qj vj+1 for some j ≥ 0 and for each of these distinct factors we have at least
one position in the string attractor. Thus, for every k > 0 exists n > 0 such that
sx(n) > k and the thesis follows. ⊓⊔

On the other hand, the converse of Proposition 2 is not true for ω-power free
words. Such a result leads to the formulation of the following Question 2. Note
that a positive answer to Question 2 implies a positive answer to Question 1:

Question 2. Let x be ω-power free word such that px is linear. Is sx(n) bounded
by a constant value?

The following examples show that for many infinite words known in literature
the string attractor profile function is not bounded by a constant. So, it could
be interesting to study its behaviour. In particular, Example 4 shows that there
exist recurrent (not uniformly) infinite words x such that the function sx is
unbounded. However, one can find a uniformly recurrent infinite word t such
that st is unbounded, as shown in Example 5 .

Example 4. Let n0, n1, n2, n3, . . . be a increasing sequence of positive integers.
Let us define the following sequence of finite words: v0 = 1, vi+1 = vi0

nivi, for
i > 0. Let us consider v = limi→∞ vi. It is possible to verify that v is recurrent,
but not uniformly, and sv is unbounded.

Example 5. Toeplitz words are infinite words constructed by an iterative process,
specified by a Toeplitz pattern, which is a finite word over the alphabet Σ∪{?},
where ? is a distinguished symbol not belonging to Σ [4]. Let us consider the
alphabet Σ = {1, 2} and the pattern p = 12???. The Toeplitz word z (also called
(5, 3)-Toeplitz word) is generated by the pattern p by starting from the infinite
word pω, obtained by repeating p infinitely. Next, the location of ? are replaced
by pω, and so forth. So,

z = 121211221112221121121222112121121211222212112 · · · .

It is known that all Toeplitz words are uniformly recurrent and, as shown in [4],
pz(n) = Θ(nr) with r = (log 5)/(log 5− log 3) ≈ 3.15066. By applying Corollary
1, we can deduce that sz is unbounded.

On the other hand, in support of the fact that sx(n) can be bounded by a
constant value by using weaker assumptions than those of Theorem 2, we can
show there exist uniformly (and not linearly) recurrent words for which sx(n) is
bounded. We can consider the infinite word u described in Example 6 such that
pu is linear and su is constant. A larger class of examples is represented by some
Sturmian words, as shown in Section 6.
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Example 6. Let us consider the following infinite word u introduced by Holub
in [12] and defined as follows. Let {ni}i≥1, be an increasing sequence of positive
integers with n1 ≥ 2. Then we define inductively the sequence ui, i ≥ 0, as
u0 = ǫ, ui = ui−1a(ui−1b)

niui−1. Let us consider u = limi→∞ ui. It has been
proved in [12] that u is uniformly recurrent but not linearly recurrent. Moreover,
for each i ≥ 1, u can be factorized as a product of words uia and uib, i.e.
u = uic1uic2uic3 · · · , where cj ∈ {a, b}. More precisely, each occurrence of ui

starts at position that is a multiple of |ui| + 1. By using the above properties,
we can prove that pu(n) = 2n. Furthermore, is possible to prove that, for i ≥ 0,
the set

{|ui|+ 1,

i
∑

k=0

(|uk|+ 1), |ui+1| − |ui|}

is a string attractor for ui+1 and a string attractor of constant size can be
deduced for each prefix of ui+1. Hence, su(n) is Θ(1).

All the infinite words considered in the paper, with information on string
attractor profile function, factor complexity and recurrence properties, are sum-
marized in Figure 1.

Infinite word x px(n) Recurrence sx(n)

Period-doubling word p (Ex. 8) Θ(n) Linearly recurrent 2

Thue-Morse word t (Ex. 2) Θ(n) Linearly recurrent 4

Holub word u (Ex. 6) Θ(n) Uniformly recurrent 3

Charact. Sturmian word s (Thm. 7) Θ(n) Uniformly recurrent 2

Power of 2 charact. sequ. c (Ex. 3) Θ(n) Not recurrent Θ(log n)

(5, 3)-Toeplitz word z (Ex. 5) Θ(n
log 5

log 5−log 3 ) Uniformly recurrent Not constant

Fig. 1. Factor complexity function px, recurrence, and string attractor profile function
sx for some infinite words.

Finally, we pose the problem of what values the string attractor profile func-
tion can assume, and in particular, whether an upper bound exists for these
values. We therefore prove the following proposition.

Proposition 3. Let x be an infinite word. Then sx(n) = O( n
logn

).

Proof. The proposition can be proved by combining results from [13] and [17].
In fact, in [13] it has been proved that, for a given finite word, there exists a
string attractor of size equal to the number z of phrases of its LZ77 parsing.
In [17] it has been proved that an upper bound on z for a word of length n is

n
(1−ǫn) logσ n

, where ǫn = 2 1+logσ(logσ(σn))
logσ n

and σ is the size of the alphabet. ⊓⊔

We wonder if the bound of Proposition 3 is tight, i.e. if there exists an infinite
word x such that sx = Θ( n

logn
) for each n ≥ n0, for some positive n0. Certainly,
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it is possible to construct an infinite word x for which there exists a sub-sequence
of positive integers ni, for i > 0, such that sx(ni) = Θ( ni

logni
). For instance, such

a word x can be constructed by using a suitable sequence of de Brujin words.
However, having information about the values of the string attractor profile
function on a sub-sequence ni does not allow us to determine its behavior for
the remaining values of n.

4 String attractor profile function on purely morphic

words

In this section, we consider the behavior of string attractor profile function for
an infinite word x, when it is a fixed point of a morphism. Note that morphisms
represents an interesting mechanism to generate infinite families of repetitive se-
quences, which has many mathematical properties ([1,9,2]). Some repetitiveness
measures have been explored when applied to words x generated by morphisms.
In [10] the number r of BWT equal-letter runs has been studied for all prefixes
obtained by iterating a morphism. In [7] the measure zx(n) that gives the num-
ber z of phrases in the LZ77 parsing of the prefix x[1, n] has been studied. It has
been proved that both z and r are upper bound for the measure γ∗, when they
are applied to finite words. The bounds on the measure z proved in [7] can be
used to prove the following theorem.

Theorem 4. Let x = ϕ∞(a) be the fixed point of a morphism ϕ prolongable on
a ∈ Σ. Then, sx(n) = O(i), where i is such that |ϕi(a)| ≤ n < |ϕi+1(a)|.

To prove Theorem 4, we use a known results on another measure of repeti-
tiveness over purely morphic word.

The LZ-parsing of a word w is its factorization LZ(w) = v1v2 · · · vz built left
to right in a greedy way by the following rule: each new factor (also called an
LZ-phrase) vi is either the leftmost occurrence of a letter in w or the longest
prefix of vi · · · vz which occurs, as a factor, in v1 · · · vi−1. For an infinite word
x, the LZ complexity zx counts for each n > 0 the size of the LZ-parsing for
the prefix of x of length n, that is zx(n) = LZ(x[1, n]). In [7] a tight bound for
the LZ complexity measure of purely morphic words is given, as reported in the
following proposition.

Proposition 4 ([7]). For a nonerasing morphism ϕ that admits the fixed point
ϕ∞(a), z(ϕi(a)) is either Θ(1), if ϕ∞(a) is ultimately periodic, or Θ(i), other-
wise.

Proof (Theorem 4). A well known property of the measure z is that it is mono-
tone with respect to the concatenation, that is z(u) ≤ z(uv) for all u, v ∈ Σ∗.
Let ni = |ϕi(a)|. By Proposition 4, for every prefix x[1, n] of the fixed point such
that |ϕi(a)| ≤ n < |ϕi+1(a)| for some i > 0, there exist two constant c1, c2 > 0
such that c1 · i ≤ z(x[1, ni]) ≤ z(x[1, n]) ≤ z(x[1, ni+1]) ≤ c2 · i + c2, that is
z(x[1, n]) = Θ(i). Finally, in [13] it has been proved that for every word w ∈ Σ∗,
it holds that γ∗(w) ≤ z(w) and the thesis follows. ⊓⊔
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In the following, we provide a finer result in the case of binary purely morphic
word.

Theorem 5. Let x = µ∞(a) be the binary fixed-point of a morphism µ : {a, b}∗ 7→
{a, b}∗ prolongable on a. Then, either sx(n) = Θ(1) or sx(n) = Θ(log n), and it
is decidable when the first or the latter occurs.

Proof. If x is ultimately periodic, then by Proposition 1 follows that sx(n) =
Θ(1). Suppose now x is aperiodic. For morphisms defined on a binary alphabet,
it holds that if x = µ∞(a) is aperiodic, then |µi(a)| grows exponentially with
respect to i (see [10]). Moreover, if µ is primitive, then by [8, Theorem 1] and
[1, Theorem 10.9.4] x is linearly recurrent, and by Theorem 2 we have that
sx(n) = Θ(1). If µ is not primitive, as summed up in [10], then only one of the
following cases occurs: (1) there exist a coding τ : Σ 7→ {a, b}+ and a primitive
morphism ϕ : Σ∗ 7→ Σ∗ such that x = µ∞(a) = τ(ϕ∞(a)) [25]; (2) x contains
arbitrarly large factors on {b}∗. For case (1), since τ preserves the recurrence of
a word and that ϕ∞(a) is linearly recurrent, then x is linearly recurrent as well,
and by Theorem 2 sx(n) = Θ(1). For case (2), one can notice that x is not ω-
power free, and by Proposition 2 for every k > 0 exists n′ such that sx(n) > k,
for every n ≥ n′. More in detail, the number of distinct maximal runs of b’s
grows logarithmically with respect to the length of the prefixes of x [10], i.e.
sx(n) = Ω(log n). On the other hand, by Theorem 4 we know that sx(n) = O(i),
where i > 0 is such that |µi(a)| ≤ n < |µi+1(a)|. Since i = Θ(log n), we can
further deduce an upper bound for the string attractor profile function and it
follows that sx(n) = Θ(log n). Finally, from a classification in [10] we can decide,
only from µ, if either sx(n) = Θ(1) or sx(n) = Θ(log n). ⊓⊔

Note that the result of Theorem 5 does not contradict a possible positive
answer to the Questions 1 and 2, because the infinite words x with linear factor
complexity and such that sx(n) = Θ(log n) are not ω-power free. Moreover, the
same bounds of Theorem 5 have been obtained for a related class of words,
i.e. the automatic sequences, as reported in the following theorem. In short, an
infinite word x is k-automatic if and only if there exists a coding τ : Σ 7→ Σ and
a k-uniform morphism µk such that x = τ(µ∞

k (a)), for some a ∈ Σ ([1]).

Theorem 6 ([26]). Let x be a k-automatic infinite word. Then, either sx(n) =
Θ(1) or sx(n) = Θ(log n), and it is decidable when the first or the latter occurs.

5 New string attractor-based complexities

In this section we introduce two new string attractor-based complexity measures,
called span complexity and leftmost complexity, that allow us to obtain a finer
classification for infinite families of words that takes into account the distribution
of positions in a string attractor of each prefix of an infinite word. Examples 8
and 9 show two infinite words, Period-Doubling word and Fibonacci word, which
are not distinguishable if we consider their respective string attractor profile
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function. In fact, they are point by point equal to 2, definitively. The situation
is very different if we look at how the positions within a string attractor are
arranged.

Span and leftmost string attractor of a finite word Let w be a a finite word
and let G be set of all string attractors Γ = {δ1, δ2, . . . , δγ} for w, with δ1 <
δ2 < . . . < δγ for any 1 ≤ γ ≤ |w|. We define span of a finite word the value
span(w) = minΓ∈G{δγ−δ1}. In other words, span(w) gives the minimum distance
between the rightmost and the leftmost positions of any string attractor for w.
Moreover, given two string attractors Γ1 and Γ2, we say that Γ1 is more to the
left of Γ2 if the rightmost position of Γ1 is smaller than the rightmost position of
Γ2. Then, we define lm(w) = minΓ∈G{δγ ∈ Γ}. Any Γ ∈ G such that δγ = lm(w)
is called leftmost string attractor for w.

Example 7. Let us consider the word w = abccabc. One can see that the sets
Γ1 = {4, 5, 6} (underlined positions) and Γ2 = {1, 2, 4} (overlined positions) are
two suitable string attractors for w. Even if both string attractors are of smallest
size (|Γ1| = |Γ2| = |Σ|), only the set Γ1 is of minimum span, since all of its
positions are consecutive, and therefore span(w) = 6−4 = 2. On the other hand,
one can see that max{Γ2} < max{Γ1}. Moreover, one can notice that the set
∆ = {1, 2, 3} is not a string attractor for w, and therefore lm(w) = max{Γ2} = 4.

Example 7 shows that for a finite word w, these two measures can be obtained
by distinct string attractors. In fact, the set {2, 3, 4} is not a string attractor for
w = abccabc, hence it does not exists Γ ′(w) = {δ1, δ2, . . . , δγ′} ∈ G such that
δγ = 4 and δγ′ − δ1 = 2.

The value span(w) can be used to derive an upper-bound on the number of
distinct factors of w, as shown in the following lemma. Such a result will be used
to find upper bounds on the factor complexity of an infinite word.

Lemma 1. Let w be a finite word. Then, for all 0 < n ≤ |w|, it holds that
|F (w) ∩Σn| ≤ n+ span(w).

Proof. Let Γ = {δ1, δ2, . . . , δγ} be a string attractor for w such that δγ − δ1 =
span(w). Then, the superset X = {i ∈ N | δ1 ≤ i ≤ δγ} of Γ is a string attractor
for w as well. Since every factor has an occurrence crossing a position in X , it is
possible to find all factors in F (w)∩Σn by considering a sliding window of length
n, starting at position max{δ1−n+1, 1} and ending at min{δγ , |w|−n+1}. One
can see that this interval is of size at most δγ − (δ1 − n+1)+ 1 = δγ − δ1 + n =
n+ span(w) and the thesis follows. ⊓⊔

The following proposition shows upper bounds for the measures γ∗, span and
lm, when a morphism is applied to a finite word w.

Proposition 5. Let ϕ : Σ∗ 7→ Σ′∗ be a morphism. Then, there exists K > 0
which depends only from ϕ such that, for every w ∈ Σ+, it holds that:

1. γ∗(ϕ(w)) ≤ 2γ∗(w) +K;
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2. span(ϕ(w)) ≤ K · span(w);
3. lm(ϕ(w)) ≤ K · lm(w).

Proof. Consider any string attractor Γ (w) = {j1, j2, . . . , jγ} for w. We now
show how to build a valid string attractor for ϕ(w) starting from Γ (w) in two
steps. First we consider the set of factors of the images of symbols, that is
Fϕ =

⋃

a∈Σ F (ϕ(a)). Recall that for every symbol a ∈ Σ there is at least a
position jk ∈ Γ (w) such that wjk = a. Then, for every a ∈ Σ we can choose
any suitable string attractor Γ (ϕ(a)) and overlay it on the occurrence ϕ(wjk ) to
cover the factors in F (ϕ(a)). Hence, every factor in Fϕ crosses at least a position
in

T ϕ =
⋃

a∈Σ

{|ϕ(w[1, jk−1])|+ δ | δ ∈ Γ (ϕ(a)) and jk ∈ Γ (w) s.t. wjk = a}.

Let us consider F = {u ∈ F (ϕ(w)) | u /∈ Fϕ} as the set of factors of ϕ(w)
that are not factors of any image over a symbol in Σ, which are those left to
cover. Then there exist v, u1, u2 ∈ Σ∗ such that u = u1ϕ(v)u2, where v ∈ F (w),
and u1 and u2 are respectively a proper prefix of ϕ(a) and a proper suffix of
ϕ(b), for some a, b ∈ Σ. Let T f = {|ϕ(w[1, jk−1])|+1 | jk ∈ Γ (w)} be the set of
positions in correspondence to the first symbol of ϕ(wjk ), where jk is a position
in Γ (w). Analogously, we define the set T l = {|ϕ(w[1, jk])| | jk ∈ Γ (w)} as the
set of positions in correspondence to the last symbol of ϕ(wjk ). Note that by
construction, if v is a factor of w, then exists an occurrence of ϕ(v) that crosses
a position either in T f or in T l. Finally, consider those factors in F that have
either or both u1, u2 ∈ Σ+. Then, there are a, b ∈ Σ such that avb ∈ F (w),
and therefore either there exists an occurrence of avb in w such that a string
attractor falls within v (as for the previous case), or an attractor position falls
either in a or b. In both cases, T f ∪ T l covers all these factors. Hence, the set
Γ ′(ϕ(w)) = T f ∪ T l ∪ T ϕ = {δ1, δ2, . . . , δγ′} is a string attractor for ϕ(w). Let
ℓ = maxa∈Σ{|ϕ(a)|}, that is the longest image for a symbol in Σ. One can notice
that:

1. if |Γ (w)| = γ∗(w), then

γ∗(ϕ(w)) ≤ |Γ ′(ϕ(w))| ≤ |T f |+ |T l|+ |T ϕ|

≤ 2γ∗(w) +
∑

a∈Σ

|Γ (ϕ(a))|;

2. if jγ−j1 = span(w), then by construction we have δ1 = |ϕ(w[1, j1−1])|+1 ∈
T f and δγ′ = |ϕ(w[1, jγ ])| ∈ T l, and therefore

span(ϕ(w)) ≤ δγ′ − δ1 = |ϕ(w[1, jγ ])| − (|ϕ(w[1, j1 − 1])|+ 1)

= |ϕ(w[j1, jγ ])| − 1

≤ ℓ(span(w) + 1);

3. if jγ = lm(w), then

lm(ϕ(w)) ≤ δγ′ = |ϕ(w[1, jγ ])|

≤ ℓ · lm(w).
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Finally, we can choose K = ℓ · |Σ| and the thesis follows for all three cases. Note
that K is independent from w. ⊓⊔

Span complexity and leftmost complexity The following measures take into ac-
count the distribution of the positions within a string attractor for each prefix of
an infinite word x. More in detail, we define the string attractor span complexity
(or simply span complexity) of an infinite word x as spanx(n) = span(x[1, n]).
We also introduce the string attractor leftmost complexity (or simply leftmost
complexity) of an infinite word x, defined as lmx(n) = lm(x[1, n]). Example 8
shows the behaviour of such measures when the period-doubling word is consid-
ered. Proposition 6 shows the relationship between the measures sx, spanx and
lmx.

Example 8. Let us consider the period-doubling sequence

pd = 101110101011 · · · ,

that is the fixed point of the morphism 1 7→ 10, 0 7→ 11. It has been proved in
[26] that spd(n) = 2 for any n > 1, while spanx(n) = 1 when 1 < n ≤ 5, and
spanx(n) = 2i when 3 · 2i ≤ n < 3 · 2i+1 and i ≥ 1.

Proposition 6. Let x be an infinite word. Then,

sx(n)− 1 ≤ spanx(n) ≤ lmx(n).

Proof. Let Γ = {δ1, δ2, . . . , δγ} be a leftmost string attractor, i.e. δγ = lmx(n).
It is possible to check that lmx(n) = δγ ≥ δγ − δ1 ≥ spanx(n). Let G be the
set of all string attractors for x[1..n] and let Γ ′ = {λ1, . . . , λγ′} ∈ G be a string
attractor such that λγ′ − λ1 = spanx(n). Recall that, for every string attractor
Γ ′ ∈ G and a set X such that Γ ′ ⊆ X , it holds that X ∈ G as well. Then,
the set X = {i ∈ N | λ1 ≤ i ≤ λγ′} is a string attractor for x[1..n]. Finally,
spanx(n) = λγ′ − λ1 = |X | − 1 ≥ sx(n)− 1 and the thesis follows. ⊓⊔

The following two propositions show that the boundedness of the two new
complexity measures here introduced can be related to some properties of repet-
itiveness for infinite words, such as periodicity and recurrence.

Proposition 7. Let x be an infinite word. x is ultimately periodic if and only
if there exists k > 0 such that lmx(n) ≤ k, for infinitely many n > 0.

Proof. First we prove the first implication. If x is ultimately periodic, then there
exist u ∈ Σ∗ and v ∈ Σ+ such that x = uvω. Observe that, for any n ≥ |uv|,
the set Γ = {i ∈ N | 1 ≤ i ≤ |uv|} is a string attractor for x[1..n], since every
factor that starts in uv is clearly covered, and every factor that lies within two
or more consecutive v’s has another occurrence starting in the first v. It follows
that we can pick k = |uv| such that lmx(n) ≤ k for every n > 0.

We now show the other direction of the implication. By hypothesis, for all
n > 0 there exists n′ ≥ n and a set Γ ′ such that Γ ′ = {δ1, δ2, . . . , δγ′} is a string
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attractor for x[1..n′], with δ1 < δ2 < . . . < δγ′ ≤ k. Hence, also the superset
Γ ′′ = {i ∈ N | 1 ≤ i ≤ min{n′, k}} is a string attractor for x[1, n′]. One can
notice that, for each n′ > k, Γ ′′ can capture at most k distinct factors of length
n, i.e. one factor starting at each position of Γ ′′. Therefore, for all n′ > k we
have that px(n

′) ≤ k = Θ(1). The thesis follows from the monotonicity of the
factor complexity with respect to the concatenation. ⊓⊔

Proposition 8. Let x be an infinite word. If there exists k > 0 such that
spanx(n) ≤ k for infinitely many n, then x is ultimately periodic or recurrent.

Proof. Let x be an ultimately periodic word. By Propositions 7 and 6, there
exists k > 0 such that k ≥ lmx(n) ≥ spanx(n), for every n > 0. So, let us suppose
that x is aperiodic, and by contraposition assume that x is not recurrent. Then,
for a sufficiently large value n′, there exists a factor u of x[1, n′] that occurs
exactly once in x. It follows that in order to cover the factor u, any suitable
string attractor Γ (x[1, n]) with n > n′ must have its first position δ1 ≤ n′ . Let
us consider then all the prefixes of length n > n′ (ignoring a finite set does not
affect the correctness of the proof). From Proposition 7 one can observe that x
being aperiodic implies that, for each k > 0, we can find only a finite number of
n > 0 such that k > lmx(n). In other terms, any string attractor of a prefix of x
ultimately has the first position bounded above by the constant value n′, while
lmx(n) must grow after the concatenation of a finite number of symbols and the
thesis follows. ⊓⊔

6 Words with constant span complexity

In this section, we consider infinite words for which the span complexity measure
assumes a constant value for infinite points. By using Proposition 8, we know
that, under this assumption, an infinite word is either ultimately periodic or
recurrent. In this section we focus our attention on aperiodic words by show-
ing that different constant values for the span complexity characterize different
infinite families of words.

Sturmian words They are very well-known combinatorial objects having a large
number of mathematical properties and characterizations. Sturmian words have
also a geometric description as digitized straight lines [19, Chapt.2]. Among ape-
riodic binary infinite words, they are those with minimal factor complexity, i.e.
an infinite word x is a Sturmian word if px(n) = n + 1, for n ≥ 0. Moreover,
Sturmian words are uniformly recurrent. An important class of Sturmian words
is that of Characteristic Sturmian words. A Sturmian word x is characteristic
if both 0x and 1x are Sturmian words. An important property of characteristic
Sturmian words is that they can be constructed by using finite words, called
standard Sturmian words, defined recursively as follows. Given an infinite se-
quence of integers (d0, d1, d2, . . .), with d0 ≥ 0, di > 0 for all i > 0, called a

directive sequence, x0 = b, x1 = a, xi+1 = x
di−1

i xi−1, for i ≥ 1. A characteristic
Sturmian word is the limit of a infinite sequence of standard Sturmian words, i.e.
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x = limi7→∞ xi. Standard Sturmian words are finite words with many interesting
combinatorial properties and appear as extremal case for several algorithms and
data structures [14,6,5,27,20].

The following theorem shows that each prefix of a characteristic Sturmian
word has a smallest string attractor of span 1, i.e. consisting of two consecutive
positions.

Theorem 7. Let x be a characteristic Sturmian word and let x0, x1, . . . , xk, . . .
be the sequence of standard Sturmian words such that x = limk→∞ xk. Let n be
the smallest positive integer such that alph(x[1..n]) = 2. Then, sx(n) = 2 and
spanx(n) = 1 for n ≥ n. In particular, a string attractor for x[1, n] is given by

Γn =











{1}, if n < n;

{|xk′−1| − 1, |xk′−1|}, if |xk′ | ≤ n ≤ |xk′ |+ |xk′−1| − 2;

{|xk′ | − 1, |xk′ |}, if |xk′ |+ |xk′−1| − 1 ≤ n < |xk′+1|

where k′ is the greatest integer k ≥ 2 such that xk (with |xk| ≥ n) is prefix of
x[1, n]. Moreover, Γn is the leftmost string attractor of x[1, n].

Proof. Let q0, q1, . . . , qk, . . . be the directive sequence of the standard Sturmian
words {xk}k≥0. We can suppose that q0 > 0. The proof can be given by in-
duction. It is easy to see that the statement is true for x2 = aq0b, since the
set {|x2| − 1, |x2|} is a string attractor. Note that this set is the leftmost string
attractor consisting of consecutive positions. Moreover, such two positions are
a string attractor for x3 = (aq0b)q1a and for each of its prefixes, too. It is
known that, for i ≥ 1, x2i = C2iab and x2i+1 = C2i+1ba, where C2i and
C2i+1 are palindrome words. Let us consider the case (i) q2i−1 = 1. In this
case x2i+1 = x2ix2i−1 = C2iabC2i−1ba. From [21, Theorem 22], it follows that
{|x2i| − 1, |x2i|} (the overlined positions) is a string attractor for x2i+1 and
it is the leftmost string attractor consisting of consecutive positions. In fact,
bC2i−1b occurs only once in x2i+1 because |C2i| + 2 and |C2i−1| + 2 are pe-
riods of C2i+1. Let us consider the subcase (i.1) in which q2i = 1. In this
case x2i+2 = x2i+1x2i = C2i+1baC2iab = C2iabC2i−1baC2iab. From [21, The-
orem 22], it follows that {|x2i+1| − 1, |x2i+1|} (the overlined positions) is a
string attractor for x2i+2. Since |C2i| + 2 is a period of C2i+2, then the set
{|x2i| − 1, |x2i|} (the underlined positions) is a string attractor for the prefix of
length |x2i+1|+ |x2i| − 2. When the prefix of length |x2i+1|+ |x2i| − 1 is consid-
ered, then {|x2i+1|−1, |x2i+1|} is a string attractor since aC2ia occurs only once
in x2i+2. Let us consider the subcase (i.2) in which q2i > 1. In this case x2i+2 =
(x2i+1)

q2ix2i = C2i+1baC2i+1ba · · ·C2i+1baC2iab. From [21, Theorem 22], it fol-
lows that {|x2i+1| − 1, |x2i+1|} (the overlined positions) is a string attractor for
x2i+2. On the other hand x2i+2 = C2iabC2i−1baC2iabC2i−1ba · · ·C2i+1baC2iab
and we know that aC2ia does not occur in the prefix of length |x2i+1|+ |x2i|−2.
This means that for that prefix {|x2i| − 1, |x2i|} (the underlined positions)
is a string attractor. Let us consider the case (ii) q2i−1 > 1. In this case
x2i+1 = x

q2i−1

2i x2i−1 = C2iabC2iab · · ·C2iabC2i−1ba. From [21, Theorem 22], it



16 A. Restivo et al.

follows that {|x2i| − 1, |x2i|} (the overlined positions) is a string attractor for
x2i+1 and it is the leftmost string attractor consisting of consecutive positions.
In fact, C2i−1b is a prefix of C2iab and bC2i−1b occurs only once in x2i+1 because
|C2i−1|+2 is period of C2i+1. Let us consider the subcase (ii.1) in which q2i = 1.
In this case x2i+2 = x2i+1x2i = C2i+1baC2iab = C2iab · · ·C2iabC2i−1baC2iab.
From [21, Theorem 22], it follows that the set {|x2i+1| − 1, |x2i+1|} (the over-
lined positions) is a string attractor for x2i+2. Since |C2i| + 2 is a period of
C2i+2, then the set {|x2i| − 1, |x2i|} (the underlined positions) is a string at-
tractor for the prefix of length |x2i+1| + |x2i| − 2. When the prefix of length
|x2i+1| + |x2i| − 1 is considered, then {|x2i+1| − 1, |x2i+1|} is a string attractor
since aC2ia occurs only once in x2i+2. Let us consider the subcase (i.2) in which
q2i > 1. In this case x2i+2 = (x2i+1)

q2ix2i = C2i+1baC2i+1ba · · ·C2i+1baC2iab.
From [21, Theorem 22], it follows that {|x2i+1| − 2, |x2i+1| − 1} (the over-
lined positions) is a string attractor for x2i+2. On the other hand x2i+2 =
C2iab · · ·C2iabC2i−1baC2i+1ba · · ·C2i+1baC2iab and we know that C2ia is a pre-
fix of C2i+1ba and aC2ia does not occur in the prefix of length |x2i+1|+ |x2i|−2.
This means that for that prefix {|x2i| − 2, |x2i| − 1} (the underlined positions)
is a string attractor. We can consider the cases q2i = 1 and q2i > 1 and the
respective sub-cases analogously. ⊓⊔

Example 9. Consider the infinite Fibonacci word x = abaababaabaababaababa . . .
that is a characteristic Sturmian word with directive sequence 1, 1, . . . , 1, . . ..

In Figure 2 are shown the first prefixes of x of length n and their respective
leftmost string attractor Γn, with n ≥ 2.

x[1] = a Γ1 = {1}

x[1,2] = ab Γ2 = {1, 2}

x[1,3] = aba Γ3 = {1, 2}

x[1, 4] = abaa Γ4 = {2, 3}

x[1,5] = abaab Γ5 = {2, 3}

x[1, 6] = abaaba Γ6 = {2, 3}

x[1, 7] = abaabab Γ7 = {4, 5}

x[1,8] = abaababa Γ8 = {4, 5}

Fig. 2. Prefixes of the Fibonacci word x of length up to 8 and their leftmost string
attractor Γn. For Fibonacci words we have n = 2. The underlined positions in x[1, n]
correspond to those in Γn, while the prefixes in bold are standard Sturmian words.

The following proposition shows that there is a one-to-one correspondence
between each characteristic Sturmian word and the sequence of the leftmost
string attractors of its prefixes.
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Proposition 9. Let x be a characteristic Sturmian word and, for each n ≥ 1,
let Γn be the string attractor of the prefix x[1, n] defined in Theorem 7. Let y be
a characteristic Sturmian word such that Γn is the leftmost string attractor for
y[1, n] for any n ≥ 1. Then, x = y (up to exchanging a and b).

Proof. Let q0, q1, . . . , qk, . . . and p0, p1, . . . , pk, . . . be the directive sequences that
uniquely define x and y respectively. Let Sa and Sb be the sets of characteristic
Sturmian words that start with a and b respectively. Note that x ∈ Sa if and
only if q0 > 0, x ∈ Sb otherwise. We now prove by construction that if x, y ∈ Sa

and x 6= y, then the sequences of leftmost string attractor with spanx(n) = 1 are
distinct as well. Consider the smallest integer i such that qi 6= pi and assume,
w.l.g., that qi < pi. If i = 0, then we can consider the prefix x[1, q0+1] = aq0b and
it is easy to see that Γ x

q0+1 = {q0, q0+1}. However, the set Γ y
q0+1 = {1} is clearly

the leftmost string attractor for the prefix of the same length y[1, q0+1] = aq0+1.
If i > 0, note that |xk| = |yk| for any k ≤ i + 1 and |xi+2| < |yi+2|. From
Theorem 7, it follows that for the prefix of x of length n′ = |xi+2| + |xi+1| − 1
we have as leftmost string attractor the set Γ x

n′ = {|xi+2| − 1, |xi+2|}, but since
n′ < |yi+2|+ |yi+1| − 1, the string y[1, n′ + 1] admits as string attractor the set
Γ y
n′ = {|xi+1| − 1, |xi+1|} = {|yi+1| − 1, |yi+1|}, and therefore Γ x

n′ 6= Γ y
n′ . A well

known property of characteristic Sturmian words is that x ∈ Sa with directive
sequence q0, q1, . . . , qk, . . ., if and only if x′ ∈ Sb, where x′ is the infinite word x
with a’s and b’s exchanged with directive sequence 0, q0, . . . , qk−1, . . .. Thus, the
proof holds as well if x, y ∈ Sb by considering the cases i = 1 and i > 1. Finally,
notice that by construction of Γn in Theorem 7, the words x and x′ generate the
same sequences of standard Sturmian words, since |xk| = |x′

k+1| for any k ≥ 1.
Therefore, either y = x or y = x′. ⊓⊔

Remark 2. There are non-characteristic Sturmian words such that some of their
prefixes do not admit any string attractor of span 1. For instance, let x =
aaaaaabaaaaaabaaaaaaab . . . be the characteristic Sturmian word obtained by
the directive sequence (6, 2, . . .). Consider the non-characteristic Sturmian word
x′ such that x = aaaa · x′, hence x′ = aabaaaaaabaaaaaaab . . .. Let us consider
the prefix x′[0, 13] = aabaaaaaabaaaa. Since the b’s occur only at positions 2
and 9 and the factor aaaaaa only in x′[3, 8], the candidates as string attractor
with two consecutive positions are ∆1 = {2, 3} and ∆2 = {8, 9}. However, one
can check that the factors aaab and baaaaa do not cross any position in ∆1 and
∆2 respectively. Nonetheless, there exists a string attractor of size 2 that does
not contain two consecutive positions, that is Γ = {3, 9}.

The following theorem shows that a new characterization of Sturmian words
can be obtained in terms of span of the prefixes.

Theorem 8. Let x be an infinite aperiodic word. Then, x is Sturmian if and
only if spanx(n) = 1 for infinitely many n > 0.

Proof. Observe that for every Sturmian word x has an infinite number of right
special factors as prefixes, as for every aperiodic and uniformly recurrent word.
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Moreover, for every right special factor v of a Sturmian word, there is a char-
acteristic Sturmian word s with vR as prefix [18, Proposition 2.1.23]. Since for
every string v ∈ Σ∗ and every string attractor Γ (v) of v it holds that the set
Γ (vR) = {n − i − 1 | i ∈ Γ (v)} is a suitable string attractor of vR [21], and
from Theorem 7 we know that spans(n) = 1 for every prefix of every charac-
teristic Sturmian word s, it follows that exist infinite prefixes v of x such that
spanx(|v|) = 1, that is our thesis.

For the other direction of the implication, recall that an infinite word x is
aperiodic if and only if px(k) ≥ k + 1 for all k > 0. Moreover, by hypothesis for
every n > 0 exists n′ > n such that spanx(n

′) = 1. It follows that |F (x[1, n]) ∩
Σk| ≤ |F (x[1, n′]) ∩Σk| ≤ n+ spanx(n

′) = n+ 1 for every n > 0, and therefore
x is Sturmian. ⊓⊔

Quasi-Sturmian words Let us consider now the quasi-Sturmian words, defined
in [3] as follows: a word x is quasi-Sturmian if there exist integers d and n0 such
that px(n) = n+d, for each n ≥ n0. The infinite words having factor complexity
n+ d have been also studied in [11] where they are called “words with minimal
block growth”. Quasi-Sturmian words can be considered the simplest general-
izations of Sturmian words in terms of factor complexity. In [3] the following
characterization of quasi-Sturmian words has been given.

Theorem 9 ([3]). An infinite word x over the alphabet Σ is quasi-Sturmian if
and only if it can be written as x = wϕ(y), where w is a finite word and y is a
Sturmian word on the alphabet {a, b}, and ϕ is a morphism from {a, b}∗ to Σ∗

such that ϕ(ab) 6= ϕ(ba).

The following proposition shows that constant values for the span complexity
at infinitely many points imply quasi-Sturmian words, i.e., the most repetitive
infinite aperiodic words after the Sturmian words.

Proposition 10. Let x be an aperiodic infinite word. If exists k > 0 such that
spanx(n) ≤ k for infinitely many n > 0, then x is quasi-Sturmian.

Proof. By hypothesis, for all n > 0 exists n′ ≥ n such that spanx(n
′) ≤ k, for

some k > 0. Then, for every finite n-length prefix of x and every m > 0, by
using Lemma 1 it holds that |F (x[1, n]) ∩ Σm| ≤ |F (x[1, n′]) ∩ Σm| ≤ m +
spx(n

′) ≤ m + k. Moreover, it is known that for every aperiodic word it holds
that px(n) ≥ n + 1 and px(n + 1) > px(n), for every n ≥ 0. Hence, there exist
k′ ≤ k and n0 ≥ 0 such that px(n) = n + k′, for every n ≥ n0 and the thesis
follows. ⊓⊔

Remark 3. Note that, in general, the converse of Proposition 10 is not true. In
fact, let w be a finite word, y a Sturmian word and ϕ a non-periodic morphism.
Then, x = wϕ(y) is quasi-Sturmian. We can choose as finite prefix w a symbol
c /∈ alph(ϕ(y)). One can notice that in this case x is not recurrent, and by
Proposition 8 the function spanx is not bounded by constant. Instead, if w = ε,
then the converse of Proposition 10 is true. It can be derived from Proposition
5 and Theorem 8.
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7 Conclusions

In this paper, we have shown that the notion of string attractor introduced
in the context of Data Compression can be useful in the study of combinatorial
properties of infinite words. The string attractor- based span complexity measure
has indeed been used to characterize some infinite word families. The problem
of characterizing words with bounded string attractor profile function remains
open. On the other hand, the two new complexity measures here introduced
could be useful to represent, in a more succinct way, information on infinite
sequences of words. Finally, it might be interesting to explore how the span and
lm measures are related to the compressor-based measures.
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