Skip to main content

Piercing Pairwise Intersecting Convex Shapes in the Plane

  • Conference paper
  • First Online:
LATIN 2022: Theoretical Informatics (LATIN 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13568))

Included in the following conference series:

  • 613 Accesses

Abstract

Let C be any family of pairwise intersecting convex shapes in a two dimensional Euclidean space. Let \(\tau (C)\) denote the piercing number of C, that is, the minimum number of points required such that every shape in C contains at least one of these points. Define a shape to be \(\alpha \)-fat when the ratio of the radius of the smallest disk that encloses the shape over the radius of the largest disk that is enclosed in the shape is at most \(\alpha \). Define \(\alpha (C)\) to be the minimum value where each shape in C is \(\alpha (C)\)-fat. We prove that \(\tau (C) \le 43.789\alpha (C) + 4 = O(\alpha (C))\) for any set C consisting of pairwise intersecting convex \(\alpha \)-fat shapes. This improves the previous best known upper-bound of \(O(\alpha (C)^2)\). This result has a number of implications on other results concerning fat shapes, such as designing data structures with less complexity for 3-D vertical ray shooting and computing depth orders. Additionally, our results reduce the time complexity of the query time of these data structures. We also get better bounds for some restricted families of shapes. We show that \((5\sqrt{2}+2)\alpha (C)+ 25 + 5\sqrt{2} \le 9.072\alpha (C) + 32.072 = O(\alpha (C))\) piercing points are sufficient to pierce a set of arbitrarily oriented \(\alpha \)-fat rectangles. We also prove that \(\tau (C) = 2\) when C is a set of pairwise intersecting homothets of regular hexagons. We show that the piercing number of a set of pairwise intersecting homothets of an arbitrary convex shape is at most 15. This improves the previous best upper-bound of 16. We also give an algorithm to calculate the exact location of the piercing points.

Research supported in part by NSERC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Let \(\tau (C)\) denote the piercing number of C, that is, the minimum number of points required such that every shape in C contains at least one of these points.

References

  1. Agarwal, Pankaj K.., Katz, Matthew J.., Sharir, Micha: Computing depth orders and related problems. In: Schmidt, Erik M.., Skyum, Sven (eds.) SWAT 1994. LNCS, vol. 824, pp. 1–12. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58218-5_1

    Chapter  Google Scholar 

  2. Agarwal, P.K., Katz, M.J., Sharir, M.: Computing depth orders for fat objects and related problems. Comput. Geom. Theory App. 5(4), 187–206 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. Biniaz, A., Bose, P., Wang, Y.: Simple linear time algorithms for piercing pairwise intersecting disks. In: He, M., D., Sheehy, M., (eds.) Proceedings of the 33rd Canadian Conference on Computational Geometry, CCCG 2021, 10–12 August 2021, Dalhousie University, Halifax, Nova Scotia, Canada, pp. 228–236 (2021)

    Google Scholar 

  4. Bose, P., et al.: The floodlight problem. Int. J. Comput. Geom. Appl. 7(1/2), 153–163 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chakerian, G.D., Stein, S.K.: Some intersection properties of convex bodies. Proc. Am. Math. Soc. 18(1), 109–112 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  6. Danzer, L.: Zur Lösung des Gallaischen Problems über Kreisscheiben in der Euklidischen Ebene. Stud. Sci. Math. Hung. 21(1–2), 111–134 (1986)

    MATH  Google Scholar 

  7. Efrat, A., Rote, G., Sharir, M.: On the union of fat wedges and separating a collection of segments by a line. In: Lubiw, A., Urrutia, J., (eds.), Proceedings of the Fifth Canadian Conference on Computational Geometry, Waterloo, pp. 115–120 (1993)

    Google Scholar 

  8. Goodman, J.E., O’Rourke, J. (eds.): Handbook of Discrete and Computational Geometry. CRC Press Inc., USA (1997)

    MATH  Google Scholar 

  9. Grünbaum, B.: On intersections of similar sets. Portugal. Math. 18, 155–164 (1959)

    MathSciNet  MATH  Google Scholar 

  10. Har-Peled, S., et al.: Stabbing pairwise intersecting disks by five points. In: 29th International Symposium on Algorithms and Computation (ISAAC 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2018)

    Google Scholar 

  11. Ed. Helly. Über mengen konvexer körper mit gemeinschaftlichen punkte. Jahresbericht der Deutschen Mathematiker-Vereinigung. 32, 175–176 (1923)

    Google Scholar 

  12. Karasev, R.N.: Transversals for families of translates of a two-dimensional convex compact set. Disc. Comput. Geom. 24(2), 345–354 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Karasev, R.N.: Piercing families of convex sets with the d-intersection property in \(\mathbb{R} ^d\). Disc. Comput. Geom. 39(4), 766–777 (2008)

    Article  MATH  Google Scholar 

  14. Katz, M.J.: 3-d vertical ray shooting and 2-d point enclosure, range searching, and arc shooting amidst convex fat objects. Comput. Geom. 8(6), 299–316 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Katz, M.J., Overmars, M.H., Sharir, M.: Efficient hidden surface removal for objects with small union size. Comput. Geom. 2(4), 223–234 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kim, S.-J., Nakprasit, K., Pelsmajer, M.J., Skokan, J.: Transversal numbers of translates of a convex body. Disc. Math. 306(18), 2166–2173 (2006)

    Google Scholar 

  17. Matousek, J., Pach, J., Sharir, M., Sifrony, S., Welzl, E.: Fat triangles determine linearly many holes. SIAM J. Comput. 23, 154–169 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  18. Nielsen, F.: On point covers of \(c\)-oriented polygons. Theo. Comp. Sci. 265(1–2), 17–29 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Overmars, M.H., van der Stappen, F.A.: Range searching and point location among fat objects. J. Algorithms 21(3), 629–656 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  20. Pach, J., Safruti, I., Sharir, M.: The union of congruent cubes in three dimensions. In Proceedings of the Seventeenth Annual Symposium on Computational Geometry, SCG 2001, pp. 19–28. Association for Computing Machinery, New York, NY, USA (2001)

    Google Scholar 

  21. Carmi, P., Morin, P., Katz, M.J.: Stabbing pairwise intersecting disks by four points (2020)

    Google Scholar 

  22. Schwarzkopf, O., Fuchs, U., Rote, G., Welzl, E.: Approximation of convex figures by pairs of rectangles. Comput. Geom. 10(2), 77–87 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Stachó, L.: Über ein Problem für Kreisscheibenfamilien. Acta Scientiarum Mathematicarum (Szeged) 26, 273–282 (1965)

    MathSciNet  MATH  Google Scholar 

  24. Stachó, L.: A solution of Gallai’s problem on pinning down circles. Mat. Lapok. 32(1–3), 19–47 (1981/1984)

    Google Scholar 

  25. van Kreveld, M.J.: On fat partitioning, fat covering and the union size of polygons. Comput. Geom. 9(4), 197–210 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saman Bazargani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bazargani, S., Biniaz, A., Bose, P. (2022). Piercing Pairwise Intersecting Convex Shapes in the Plane. In: Castañeda, A., Rodríguez-Henríquez, F. (eds) LATIN 2022: Theoretical Informatics. LATIN 2022. Lecture Notes in Computer Science, vol 13568. Springer, Cham. https://doi.org/10.1007/978-3-031-20624-5_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20624-5_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20623-8

  • Online ISBN: 978-3-031-20624-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics