Skip to main content

Medical Knowledge Graph Construction Based on Traceable Conversion

  • Conference paper
  • First Online:
Health Information Science (HIS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13705))

Included in the following conference series:

Abstract

Medical knowledge graph (MKG) can provide ideal technical support for integrating multi-structure data and enhancing graph-based services. The construction of MKG usually requires information extracted from a large number of data sources, including structured data from medical databases (MDBs) and unstructured data from medical texts. However, the previous works used single data sources and simple format conversion when constructing MKG, and the MKG information constructed in this way is incomplete and untraceable. This paper proposes a method to build MKG based on traceable conversion to solve the above problems. For the structured data from MDB, the DB data is automatically converted into MKG nodes in the form of the RDF, which not only reduces the DB information loss in the conversion process but also enriches the types of graph nodes. When the data is efficiently converted, the converted nodes can also be traced back to the source. For the unstructured data from medical text, a strong deep learning model is used for entity and relation extraction. On the basis of avoiding the exposure bias and ensuring consistency of model training and prediction, the medical texts information is maximally extracted, and traceability is added, which reduces medical texts information loss and further complements the MKG. Based on the traceable conversion method for MKG construction, medical multi-structure data can be used more effectively to construct MKG.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References s

  1. Vimalachandran, P., Liu, H., Lin, Y., Ji, K., Wang, H., Zhang, Y.: Improving accessibility of the Australian my health records while preserving privacy and security of the system. Health Inf. Sci. Syst. 8(1), 1–9 (2020). https://doi.org/10.1007/s13755-020-00126-4

    Article  Google Scholar 

  2. Pandey, D., Wang, H., Yin, X., et al.: Automatic breast lesion segmentation in phase preserved DCE-MRIs. Health Inf. Sci. Syst. 10(1), 1–19 (2022)

    Article  Google Scholar 

  3. Sarki, R., Ahmed, K., Wang, H., Zhang, Y.: Automated detection of mild and multi-class diabetic eye diseases using deep learning. Health Inf. Sci. Syst. 8(1), 1–9 (2020). https://doi.org/10.1007/s13755-020-00125-5

    Article  Google Scholar 

  4. Supriya, S., Siuly, S., Wang, H., Zhang, Y.: Automated epilepsy detection techniques from electroencephalogram signals: a review study. Health Inf. Sci. Syst. 8(1), 1–15 (2020). https://doi.org/10.1007/s13755-020-00129-1

    Article  Google Scholar 

  5. He, J., Rong, J., Sun, L., Wang, H., Zhang, Y., Ma, J.: A framework for cardiac arrhythmia detection from IoT-based ECGs. World Wide Web 23(5), 2835–2850 (2020). https://doi.org/10.1007/s11280-019-00776-9

    Article  Google Scholar 

  6. Sarki, R., Ahmed, K., Wang, H., et al.: Convolutional neural network for multi-class classification of diabetic eye disease. EAI Endorsed Trans. Scalable Inf. Syst. e15 (2022)

    Google Scholar 

  7. Zhang, Y., Sheng, M., Zhou, R., et al.: HKGB: an inclusive, extensible, intelligent, semi-auto-constructed knowledge graph framework for healthcare with clinicians’ expertise incorporated. Inf. Process. Manage. 57(6), 102324 (2020)

    Article  Google Scholar 

  8. Heese, R., Znamirowski, M.: Resource centered RDF data management. In: SSWS, pp. 138–153 (2012)

    Google Scholar 

  9. Du, J., Michalska, S., Subramani, S., Wang, H., Zhang, Y.: Neural attention with character embeddings for hay fever detection from twitter. Health Inf. Sci. Syst. 7(1), 1–7 (2019). https://doi.org/10.1007/s13755-019-0084-2

    Article  Google Scholar 

  10. Chen, T., Hu, Y.: Entity relation extraction from electronic medical records based on improved annotation rules and BiLSTM-CRF. Ann. Transl. Med. 9(18), 1415 (2021)

    Article  Google Scholar 

  11. ISO/TC 211: Geographic Information-Metadata-Part 1: Fundamentals. Geneva, Switzerland (2014)

    Google Scholar 

  12. Moreau, L., Missier, P., Belhajjame, K., et al.: PROV-dm: the PROV data model (2022-06-08). https://www.w3.org/TR/2013/REC-prov-dm-20130430/

  13. Liu, Y., Huang, X., Li, S., et al.: A construction method of power grid monitoring knowledge graph. J. Phys. Conf. Ser. 2166(1), 012010 (2022)

    Google Scholar 

  14. Li, F., Chen, H., Xu, G., et al.: AliMeKG: domain knowledge graph construction and application in e-commerce. In: CIKM, pp. 2581–2588 (2020)

    Google Scholar 

  15. Al-Khatib, K., Hou, Y., Wachsmuth, H., et al.: End-to-end argumentation knowledge graph construction. In: AAAI, pp. 7367–7374 (2020)

    Google Scholar 

  16. Chen, I., Agrawal, M., Horng, S., et al.: Robustly extracting medical knowledge from EHRs: a case study of learning a health knowledge graph. In: Pacific Symposium on Biocomputing, pp. 19–30 (2019)

    Google Scholar 

  17. Kim, T., Yun, Y., Kim, N.: Deep learning-based knowledge graph generation for COVID-19. Sustainability 13(4), 2276 (2021)

    Article  Google Scholar 

  18. Zheng, Z., Liu, Y., Zhang, Y., et al.: TCMKG: a deep learning based traditional Chinese medicine knowledge graph platform. In: ICKG, pp. 560–564 (2020)

    Google Scholar 

  19. Sequeda, J., Arenas, M., Miranker, D.: On directly mapping relational databases to RDF and OWL. In: WWW, pp. 649–658 (2012)

    Google Scholar 

  20. Spanos, D., Stavrou, P., Mitrou, N.: Bringing relational databases into the semantic web: a survey. Semantic Web 3(2), 169–209 (2012)

    Article  Google Scholar 

  21. Qi, T., Qiu, S., Shen, X., et al.: KeMRE: knowledge-enhanced medical relation extraction for Chinese medicine instructions. J. Biomed. Inform. 120, 103834 (2021)

    Article  Google Scholar 

  22. Trigui, S., Boujelben, I., Jamoussi, S.: SMRE: semi-supervised medical relation extraction. In: ICNLSSP, p. 121 (2017)

    Google Scholar 

  23. Kamdar, M., Stanley, C., Carroll, M., et al.: Text snippets to corroborate medical relations: an unsupervised approach using a knowledge graph and embeddings. In: AMIA Summits on Translational Science Proceedings 2020, pp. 288–297 (2020)

    Google Scholar 

  24. Wang, Y., Yu, B., Zhang, Y., et al.: TPLinker: single-stage joint extraction of entities and relations through token pair linking. In: COLING, pp. 1572–1582 (2020)

    Google Scholar 

  25. Ren, P., Hou, W., Sheng, M., Li, X., Li, C., Zhang, Y.: MKGB: a medical knowledge graph construction framework based on data lake and active learning. In: Siuly, S., Wang, H., Chen, L., Guo, Y., Xing, C. (eds.) HIS 2021. LNCS, vol. 13079, pp. 245–253. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90885-0_22

    Chapter  Google Scholar 

  26. Lee, J., Park, J., Wang, K., et al.: The use of telehealth during the coronavirus (COVID-19) pandemic in oral and maxillofacial surgery - a qualitative analysis. EAI Endorsed Trans. Scalable Inf. Syst. 18(e34), (2021)

    Google Scholar 

  27. Siuly, S., Alçin, Ö.F., Kabir, E., et al.: A new framework for automatic detection of patients with mild cognitive impairment using resting-state EEG signals. IEEE Trans. Neural Syst. Rehabil. Eng. 28(9), 1966–1976 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key R&D Program of China (2020AAA0109603).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenkui Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hou, W. et al. (2022). Medical Knowledge Graph Construction Based on Traceable Conversion. In: Traina, A., Wang, H., Zhang, Y., Siuly, S., Zhou, R., Chen, L. (eds) Health Information Science. HIS 2022. Lecture Notes in Computer Science, vol 13705. Springer, Cham. https://doi.org/10.1007/978-3-031-20627-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20627-6_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20626-9

  • Online ISBN: 978-3-031-20627-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics