Skip to main content

Optical Coherence Tomography Classification Based on Transfer Learning and RA-Attention

  • Conference paper
  • First Online:
Health Information Science (HIS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13705))

Included in the following conference series:

Abstract

Macular disease is one of the major causes of blindness. Optical coherence tomography (OCT) is a commonly used ophthalmic diagnostic technique to assist ophthalmologists in their analysis and treatment. However, manual analysis is a time-consuming, heavy and subjective process. In this paper, we propose an improved EfficientNet model for retinal OCT image classification, named TL-RA-EfficientNet. It introduces a Re-Attention module to enable the model to identify the lesions with small areas and fuzzy shapes. During training, a data augmentation strategy is introduced to solve the class-imbalance problem, and a transfer learning strategy is adopted to speed up the convergence of the model. The experimental results on the UCSD dataset show that the average recognition accuracy, sensitivity and specificity of our model are 99.9%, 99.9% and 99.97%, respectively, which are more effective than previous classification methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kokame, G.T., Omizo, J.N., Kokame, K.A., Yamane, M.L.: Differentiating exudative macular degeneration and polypoidal choroidal vasculopathy using OCT B-scan. Ophthalmol. Retina 5(10), 954–961 (2021)

    Article  Google Scholar 

  2. Goh, J.K.H., Cheung, C.Y., Sim, S.S., Tan, P.C., Tan, G.S.W., Wong, T.Y.: Retinal imaging techniques for diabetic retinopathy screening. J. Diabetes Sci. Technol. 10(2), 282–294 (2016)

    Article  Google Scholar 

  3. Adhi, M., Duker, J.S.: Optical coherence tomography – current and future applications. Curr. Opin. Ophthalmol. 24(3), 213–221 (2013)

    Article  Google Scholar 

  4. Wang, Y., et al.: A DNN for arrhythmia prediction based on ECG. In: Huang, Z., Siuly, S., Wang, H., Zhou, R., Zhang, Y. (eds.) HIS 2020. LNCS, vol. 12435, pp. 146–153. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61951-0_14

    Chapter  Google Scholar 

  5. Qi, Y., Lin, S., Huang, Z.: Classification of skin pigmented lesions based on deep residual network. In: Wang, H., Siuly, S., Zhou, R., Martin-Sanchez, F., Zhang, Y., Huang, Z. (eds.) HIS 2019. LNCS, vol. 11837, pp. 58–67. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32962-4_6

    Chapter  Google Scholar 

  6. Puneet, Kumar, R., Gupta, M.: Optical coherence tomography image based eye disease detection using deep convolutional neural network. Health Inf. Sci. Syst. 10, 13 (2022)

    Google Scholar 

  7. Zhang, X., et al.: Mixed pyramid attention network for nuclear cataract classification based on anterior segment OCT images. Health Inf. Sci. Syst. 10(1), 1–12 (2022). https://doi.org/10.1007/s13755-022-00170-2

    Article  Google Scholar 

  8. Awais, M., Müller, H., Tang, T.B., Meriaudeau, F.: Classification of SD-OCT images using a Deep learning approach. In: 2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA), Kuching, Malaysia, pp. 489–492. IEEE (2017)

    Google Scholar 

  9. Bhowmik, A., Kumar, S., Bhat, N.: Eye disease prediction from optical coherence tomography images with transfer learning. In: Macintyre, J., Iliadis, L., Maglogiannis, I., Jayne, C. (eds.) EANN 2019. CCIS, vol. 1000, pp. 104–114. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20257-6_9

    Chapter  Google Scholar 

  10. Fang, L., Wang, C., Li, S., Rabbani, H., Chen, X., Liu, Z.: Attention to lesion: lesion-aware convolutional neural network for retinal optical coherence tomography image classification. IEEE Trans. Med. Imaging 38(8), 1959–1970 (2019)

    Article  Google Scholar 

  11. Mishra, S.S., Mandal, B., Puhan, N.: Perturbed composite attention model for macular optical coherence tomography image classification. IEEE Trans. AI 3, 625–635 (2021)

    Google Scholar 

  12. Tan, M., Le, Q.V.: EfficientNet: rethinking model scaling for convolutional neural networks. In: 36th International Conference on Machine Learning, Los Angeles, pp. 6105–6114 (2019)

    Google Scholar 

  13. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)

    Article  Google Scholar 

  14. Tezduyar, T.E., Mittal, S., Ray, S.E., Shih, R.: Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements. Comput. Methods Appl. Mech. Eng. 95(2), 221–242 (1992)

    Article  Google Scholar 

  15. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009)

    Google Scholar 

  16. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  17. Kermany, D.S., et al.: Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell 172(5), 1122–1131 (2018)

    Article  Google Scholar 

  18. Islam, K.T., Wijewickrema, S., O’Leary, S.: Identifying diabetic retinopathy from OCT images using deep transfer learning with artificial neural networks. In: 2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS), pp. 281–286 (2019)

    Google Scholar 

  19. Chen, S., Chen, M., Ma, W.: Research on automatic classification of optical coherence tomography retina image based on multi-channel. Chin. J. Lasers 48(23), 109–118 (2021)

    Google Scholar 

  20. Roy, A.G., Navab, N., Wachinger, C.: Recalibrating fully convolutional networks with spatial and channel “Squeeze and Excitation.” IEEE Trans. Med. Imaging 38(2), 540–549 (2019)

    Article  Google Scholar 

  21. Dai, Y., Gieseke, F., Oehmcke, S., Wu, Y., Barnard, K.: Attentional feature fusion. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pp. 3560–3569 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lina Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lian, X., Chen, L., Ji, X., Shen, F., Guo, H., Gao, H. (2022). Optical Coherence Tomography Classification Based on Transfer Learning and RA-Attention. In: Traina, A., Wang, H., Zhang, Y., Siuly, S., Zhou, R., Chen, L. (eds) Health Information Science. HIS 2022. Lecture Notes in Computer Science, vol 13705. Springer, Cham. https://doi.org/10.1007/978-3-031-20627-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20627-6_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20626-9

  • Online ISBN: 978-3-031-20627-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics