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Abstract. The study of existing links among different types of medical
concepts can support research on optimal pathways for the treatment of
human diseases. Here, we present a clustering analysis of medical con-
cept learned representations generated from MIMIC-IV, an open dataset
of de-identified digital health records. Patient’s trajectory information
were extracted in chronological order to generate +500k sequence-like
data structures, which were fed to a word2vec model to automatically
learn concept representations. As a result, we obtained concept embed-
dings that describe diagnostics, procedures, and medications in a con-
tinuous low-dimensional space. A quantitative evaluation of the embed-
dings shows the significant power of the extracted embeddings on pre-
dicting exact labels of diagnoses, procedures, and medications for a given
patient trajectory, achieving top-10 and top-30 accuracy over 47% and
66%, respectively, for all the dimensions evaluated. Moreover, clustering
analyses of medical concepts after dimensionality reduction with t-SNE
and UMAP techniques show that similar diagnoses (and procedures) are
grouped together matching the categories of ICD-10 codes. However, the
distribution by categories is not as evident if PCA or SVD are employed,
indicating that the relationships among concepts are highly non-linear.
This highlights the importance of non-linear models, such as those pro-
vided by deep learning, to capture the complex relationships of medical
concepts.

Keywords: Electronic health records · Patient trajectory · Embeddings
· Clustering · Representation learning
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1 Introduction

Electronic health record (EHR) data can be used in secondary applications
to monitor, diagnose and predict the future state of a patient, providing per-
sonalized health care, while exploring new treatments for human diseases [9].
Nonetheless, an important challenge to overcome when using EHR data is their
heterogeneous composition and high dimensionality, since they usually include a
plethora of concept types, such as patient demographics, hospital administrative
information, diagnoses, procedures, lab tests and medications, in the most varied
formats (categories, free-text, numerals, etc.) [19, 20, 4]. These features can be
semantically normalised in knowledge-based systems and treated as categorical
values [18, 20]. However, the manual curation process is expensive, often limit-
ing its application to the whole extend of the EHR datasets. Features extraction
via automatic derivation using natural language processing models, also called
concept embeddings, have been suggested as an alternative [1, 16, 2, 17].

Concept embeddings in natural language are aimed to be semantic, meaning
that similar concepts should be characterized by geometrical proximity in the
vector space. Previous studies [2] suggest that rule-based algorithms designed by
medical experts are limited in terms of scalability, as well as in predictive capacity
compared to data-driven concept embeddings obtained with neural networks.
This has led to a significant increase in research that utilizes deep learning
to extract information from EHR [17] using static-vector models [2], as well
as, deep contextualized models [15]. In turn, the study of semantic relations
among medical concept embeddings has gained popularity in the last few years,
providing for example insights into the biomedical domain while preserving the
anonymity of personal information [3].

In this paper, we aim to assess the complexity nature of concept relations in
low-dimensional vector spaces created by embedding models. After pre-processing
EHR data to create admission-wise data structures, clinical events for a given
patient were provided to a representation learning model based on the word2vec
algorithm [13] to create low-dimensional representations of the medical con-
cepts. The study presented herein is divided into three main parts: i) selection
and pre-processing of EHR datasets (subsection 2.1), ii) generation and valida-
tion of medical concept embeddings (subsections 2.2 and 3.1), and iii) clustering
analysis of low-dimensional medical concept representations (subsection 3.2).

2 Methodology

Clinical information of +382k patients was extracted from the Medical Infor-
mation Mart for Intensive Care - version 4 (MIMIC-IV) [7], an open dataset of
de-identified digital health records from the Beth Israel Deaconess Medical Cen-
ter with +523k hospital admissions that span between 2008 and 2019. Previous
studies in medical informatics have already used MIMIC-IV [14, 12, 6], validat-
ing the use of this database for digital health-related topics. In our study, EHR
data of every patient’s admission were chronologically extracted and converted
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into sequence-like data structures ready to be processed by the word2vec model.
Medical concept embeddings were further dimensionally reduced for analysis and
visualization purposes. Figure 1 shows a flowchart of the methodology followed
in this study.

Demographics
Locations
Diagnoses
Procedures
Lab tests
Medications

EHR
(MIMIC-IV)

Sentence 
(Admission)

Word2vec 
(CBOW)

0 1 0 1 1 0

1 1 0 0 0 0

0 1 1 1 1 0

0 0 1 0 1 1

1 0 0 1 1 1

Embeddings 
(Medical concepts)

2D Representation
(Clusters)

…

…

…

…

…
Dimensionality 

reduction
(t-SNE, UMAP)

Fig. 1. Workflow scheme illustrating the process followed in the study. Colored dots
represent medical concepts of different categories, that are embedded into a 200-
dimensional vector space, and visualized after dimensionality reduction.

2.1 Data pre-processing

More than 35,000 medical concepts within 6 different categories (i.e., demo-
graphics, locations, diagnoses, procedures, lab tests, and medications) were ex-
tracted from the MIMIC-IV database (see Table 1 for detailed information).
These concepts were then mapped to standard biomedical terminologies (e.g.,
ICD-10 codes for diagnoses and procedures, and Generic Sequence Number for
medications) or to local terminologies, such as for hospital locations (e.g., PACU
instead of Post-anesthesia care unit). Patient’s age was also normalized into four
labels according to the admission’s starting date and their first registered age.
For each patient’s admission, the corresponding medical concepts were chrono-
logically placed into text arrays forming word2vec compatible sequence-like data
structures (or sentences). Note that, to reduce the number of concepts per
admission-sequence, for laboratory results only lab tests with abnormal results
(i.e., above or below normal ranges) were included in the final corpus, setting
the average number of medical concepts per admission to 60 (σ = 66). Moreover,
as diagnoses are billed on hospital discharge, they do not have a temporal order
of appearance, and therefore they were put together in each sequence by level of
importance after demographic data. The complete dataset was split into three
subsets for training, validation, and testing purposes, with 521.2k, 1.3k, and 1.3k
admissions, respectively.
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2.2 Word2vec embeddings

To obtain medical concept embeddings, a word2vec model was trained with
the MIMIC-IV dataset. Word2vec is a natural language processing technique
that utilizes shallow fully-connected neural networks to learn representations of
different labels from large text datasets [13]. The information of each concept
is embedded into a unique numeric array of a pre-determined dimension, which
allows the assessment of semantic relationships with a quantitative mathematical
framework. In our case, word2vec was trained as a Continuous Bag of Words
(CBOW) model with a context window of five labels, i.e., the context to predict
medical concepts spans ±5 places from their current location in the admission
timeline. Following the suggestions of previous studies [2], a dimensional size
of 200 decimal numbers was set for the embedding of medical concepts. The
resulting representations were saved as a M × 200 matrix array, where M is
the number of medical concepts (i.e., 36,987) embedded within the same low-
dimensional vector space.

Table 1. Classification of medical concepts from MIMIC-IV. Each category has a
determined number of different medical concepts whose embbedings are generated by
a word2vec model. * local terminology.

Category Concepts Terminology

Demographics* 14 gender, age, ethnicity, status
Location* 36 hospital location
Diagnosis 19,735 ICD-10 CM
Procedure 11,503 ICD-10 PCS
Lab test* 929 MIMIC-IV ItemID
Medication 4,770 Generic Sequence Number

3 Results & discussion

3.1 Medical concept prediction

For this study, we employed the properties of numerical vectors to evaluate the
predictive power of medical concept embeddings over different clinical categories.
A subset of hospital admissions for 1000 out-of-sample patients, i.e., not present
in the training dataset, was used to evaluate diagnosis, procedure, and medica-
tion predictions. It is noteworthy to mention that patients could be admitted
to the hospital more than once, and therefore the number of admissions is usu-
ally higher than the number of patients (i.e., around 1.3k in our case). Within
this framework, all concepts associated with a given category (e.g., ICD-10 CM
codes for diagnoses) were subtracted from the admission-sequence and used as
true labels to be predicted. The remaining concepts within each sequence were
aggregated together using the weighted average to generate embeddings that
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represent patients in the vector space. Individual weights were inversely propor-
tional to the frequency of label appearance across the entire corpus, assigning
lower values to highly repeated concepts. The similarity of these admission rep-
resentations with the embeddings of the true labels was subsequently evaluated
by means of the cosine distance, creating a ranking of most similar concepts.
The predictive power was estimated using the top-k accuracy, where a successful
outcome was registered when at least one of the hidden true labels was ranked
within the k-most similar concepts.

Table 2 shows the top-10 and top-30 accuracy for prediction of diagnoses,
procedures, and medications using word2vec models trained with different repre-
sentations of patient’s admission-sequences created from the MIMIC-IV dataset.
While the sorted dataset displays locations, procedures, medications, and lab
tests in chronological order of intervention, the shuffled one contains the same
medical concepts per admission, randomly shuffled without a specific order. One
more dataset - mixed - was also created by concatenating the sorted and shuffled
datasets, generating a semi-sorted text corpus with twice the number of concepts.
Superior predictive performances for diagnoses and medications were achieved
with the model trained using the shuffled dataset, whereas the prediction of pro-
cedures (i.e., ICD-10 PCS codes) was highest when the model was trained with
the mixed one. On the other hand, a significantly lower accuracy is obtained for
the prediction of diagnoses when the sorted dataset is employed. The drop in
performance is consistent with the fact that when all diagnoses are masked from
the test dataset, most of the context necessary to describe the concepts is also
removed. Note that in the sorted dataset, diagnoses are grouped together after
the demographic information, which forces the model to learn their relationships
from previous diagnoses. This does not happen with the shuffled dataset, where
diagnoses can be located at any position of the sequence, having labels from dif-
ferent categories as neighbours. Overall, the medical concept embeddings have a
high predictive power with a top-10 accuracy over 47%, and a top-30 accuracy
over 66%, for all three categories. This is quite remarkable taking into account
that predictions were enforced to match true labels, e.g., ICD-10 CM codes were
predicted with the same number of characters as they were billed by the hos-
pital administration, i.e., nearly 20k different concepts. It is also noteworthy
to mention that similar results were obtained for different validation and test
datasets.

On the other hand, a less strict experiment has also been analyzed for diag-
noses and procedures, where the accuracy on successful concept prediction has
been constrained to the initial characters of the ICD-10 codes. Figure 2 shows
a significant increase of more than 15% on top 5, 10, and 30 accuracy in both
cases when three (or less) ICD-10 characters had to be predicted, indicating that
word2vec embeddings are able to capture the general relationships among differ-
ent medical concepts. In terms of applicability, this high accuracy on category
prediction indicates that small but reliable NLP models such as word2vec could
be useful to aid in determining general type of injuries or diseases in patients.
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Table 2. Top 10/30 accuracy on predicting exact labels of diagnoses, procedures, and
medications over 1000 out-of-sample patients. Word2vec (CBOW) was trained with
three different datasets: EHR preserving patient timeliness (sorted), shuffled, and a
combination of both (mixed).

Category Accuracy@10 Accuracy@30
Sorted Shuffled Mixed Sorted Shuffled Mixed

Diagnosis 4.28 47.07 15.61 8.16 66.48 30.11
Procedure 50.23 52.85 58.86 63.02 70.26 77.20
Medication 22.55 65.45 44.09 32.64 80.55 62.27

3.2 Cluster analysis of medical concepts

To obtain a qualitative understanding of medical concept relationships, the em-
beddings of diagnoses, procedures, and medications were further dimensionally
reduced using non-linear visualization algorithms, such as t-SNE and UMAP [10,
11]. These techniques provide a 2-dimensional representation of the vector space,
aggregating similar concepts closer to each other, while separating significantly
dissimilar sub-groups. Note that diagnosis and medication embeddings were ob-
tained from the model trained with the shuffled dataset, whereas procedure vec-
tors were generated with the model trained using the mixed dataset, as it showed
higher predictive power for that category. To evaluate the capacity of these em-
beddings on capturing the semantic meaning of different medical concepts, these
2-D representations were depicted with distinctive colors associated with their
corresponding code topics as shown in Figure 3. Diagnoses with the same first
ICD-10 CM letter belong to the same medical topic, e.g., codes staring with the
letter “O” are diagnoses related to pregnancy, childbirth, and puerperium, while
in procedures, the second ICD-10 PCS digit determines the part of the body
where a surgical procedure takes place. In this case, 2-dimensional representa-
tions and their corresponding colors show a clear correspondence among groups
of concepts in the low-dimensional vector space and the topics associated with
their true label.

Figure 3a & 3b show that similar diagnoses are grouped together matching
the sub-categories of ICD-10 codes. While specific diagnoses (e.g., pregnancy and
childbirth) are aggregated within a limited region (orange dots), more general
diagnoses such as those involving injury and poisoning (i.e., codes staring with S
or T) are situated all across the vector space. A similar distribution is observed
for surgical interventions, indicating that procedure embeddings capture to some
extent the information regarding the part of the body where surgical operations
should take place (e.g., red dots in Figure 3c & 3d correspond to surgeries of the
respiratory system).

On the other hand, prescribed medications in MIMIC-IV are labelled using
generic sequence numbers that do not give information about their components.
Therefore, to associate types of medication with embedding locations within the
2-dimensional vector space, drug names were mapped to their corresponding
Anatomical Therapeutic Chemical (ATC) codes, where the first letter indicates
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Fig. 2. Top 5, 10, and 30 accuracy on predicting ICD-10 codes for (a) diagnoses and
(b) procedures. Medical concept representations have been obtained from a word2vec
model trained with the shuffled dataset. Accuracy on concept prediction has been
calculated for successful matches of 1, 2, 3, and 4 ICD-10 characters, as well as, an
exact match with the target.

the anatomical main group (e.g., ATC drug codes starting with “C” were de-
signed for the cardiovascular system). It is noteworthy to mention that only 56.2
% of the medications in the dataset were successfully mapped to ATC codes, re-
ducing the overall number of displayed concepts in Figure 3e & 3f from 4,770 to
2,681. Nevertheless, similar concept aggregations are still present for some medi-
cations (e.g., C-starting ATC codes form a blue point aggregation), suggesting a
consistent match between medication embeddings and their associated anatom-
ical main group even when this information was not present during the training
process, as word2vec models were trained with generic sequence numbers.

This topic distribution is not as evident when linear methods, such as Prin-
cipal Component Analysis (PCA) or Singular Value Decomposition (SVD), are
employed to reduce the vector space or to generate linear concept embeddings. A
cluster analysis over medical concepts was performed to quantitatively assess the
performance mismatch between linear and non-linear approaches. The k-means
algorithm [5] was applied separately over diagnosis, procedure, and medication
embeddings to group the concepts into 50 different clusters. These clusters were
subsequently assigned to a medical topic using the majority vote rule, i.e., if
most diagnoses within a given cluster started with letter “O”, that cluster was
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associated with the “O” ICD-10 CM sub-category. This allowed for the compar-
ison of true label locations with clusters that minimize the squared Euclidean
distance among embeddings.

Figure 4 shows the F1-scores (averaged over all sub-categories) of the cluster-
ings obtained for diagnoses, procedures, and medications, as a function of their
dimensionality. Note that, representations with a dimensional size of 200 were
the original embeddings generated by word2vec, while the remaining clusterings
were obtained over dimensionally-reduced vector spaces using t-SNE and PCA.
Indeed, a significant drop in performance is observed when embeddings were re-
duced with PCA, indicating that relationships among concepts of any category
are better captured by non-linear methods. Interestingly, this superiority of non-
linear techniques is not only observed for dimensionality reduction, but also in
the generation of embeddings. Figure 5 compares the distribution of mean F1-
scores for 100 different k-mean clusterings performed over diagnoses, procedures,
and medications, whose embeddings have been obtained using word2vec, and
Latent Semantic Analysis (LSA), a natural language processing technique that
uses truncated SVD to analyze relationships among different concepts from text
datasets [8]. LSA was performed over the shuffled (Figure 5) and sorted (not
shown) datasets with a clear underperformance in comparison with word2vec
embeddings trained with the shuffled (diagnoses and medications) and mixed
(procedures) corpora. This reveals the non-linear nature of the relationships
among medical concepts even within the same category, stressing the need for
novel machine learning architectures beyond log-linear models. In this sense, deep
contextual language models could solve current word2vec limitations in terms of
linearity and prediction accuracy by introducing context-based representations
of medical concepts.

4 Conclusions

We generated robust word2vec representations of medical concepts extracted
from digital records of MIMIC-IV. These embeddings exhibited a high predic-
tive power for diagnoses, procedures, and medications, making them suitable for
the study of semantic relationships. A cluster analysis showed that similar con-
cepts are located nearby within the vector space, matching their respective topic
codes, even when that information is not contained in the training dataset. How-
ever, this behavior is not evident when linear techniques are applied to generate
embeddings or reduce their dimensionality, revealing the complex relationships
among medical concepts, and highlighting the importance of using non-linear
models, such as neural networks, in order to capture their semantic meaning
and relationships. Future studies could therefore be focused on the comparison
of static-vector and context-dependent medical representations from different
NLP models.
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Fig. 3. 2-dimensional representation of diagnoses (a,b), procedures (c,d), and medica-
tions (e,f) using t-SNE (left) and UMAP (right). Medical concepts are depicted as dots
using colors associated with the first (and second for procedures) characters of ICD-
10 CM (diagnosis), ICD-10 PCS (procedures), and ATC (medication) codes. Crosses
show example codes for clarification purposes. ICD-10 CM O09.00 is associated with
supervision of pregnancy with history of infertility in an unspecified trimester. ICD-10
PCS 0BH17EZ is related to insertion of endotracheal airway into trachea, via natural
or artificial opening. ATC C07 refers to beta-blocking agents.
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(orange) lines represent medical concepts after dimensionality reduction (with sizes 2
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groups for embeddings generated with word2vec (LSA).


