Skip to main content

Anomaly Detection on Health Data

  • Conference paper
  • First Online:
Health Information Science (HIS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13705))

Included in the following conference series:

Abstract

The identification of anomalous records in medical data is an important problem with numerous applications such as detecting anomalous reading, anomalous patient health condition, health insurance fraud detection and fault detection in mechanical components. This paper compares the performances of seven state-of-the-art anomaly detection algorithms to do detect anomalies in healthcare data. Our experimental results in six datasets show that the state-of-the-art method of isolation based method iForest has a better performance overall in terms of AUC and runtime.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://odds.cs.stonybrook.edu.

References

  1. Amer, M., Goldstein, M.: Nearest-neighbor and clustering based anomaly detection algorithms for rapidminer. In: Proceedings of the 3rd RapidMiner Community Meeting and Conference (RCOMM 2012), pp. 1–12 (2012)

    Google Scholar 

  2. Angiulli, F., Pizzuti, C.: Fast outlier detection in high dimensional spaces. In: Elomaa, T., Mannila, H., Toivonen, H. (eds.) PKDD 2002. LNCS, vol. 2431, pp. 15–27. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45681-3_2

    Chapter  Google Scholar 

  3. Aryal, S., Ting, K.M., Haffari, G.: Revisiting attribute independence assumption in probabilistic unsupervised anomaly detection. In: Chau, M., Wang, G.A., Chen, H. (eds.) PAISI 2016. LNCS, vol. 9650, pp. 73–86. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31863-9_6

    Chapter  Google Scholar 

  4. Bandaragoda, T.R., Ting, K.M., Albrecht, D., Liu, F.T., Wells, J.R.: Efficient anomaly detection by isolation using nearest neighbour ensemble. In: 2014 IEEE International Conference on Data Mining Workshop, pp. 698–705 (2014). https://doi.org/10.1109/ICDMW.2014.70

  5. Bandaragoda, T.R., Ting, K.M., Albrecht, D., Liu, F.T., Zhu, Y., Wells, J.R.: Isolation-based anomaly detection using nearest-neighbor ensembles. Comput. Intell. 1–31 (2017). https://doi.org/10.1111/coin.12156

  6. Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: LOF: identifying density-based local outliers. SIGMOD Rec. 29(2), 93–104 (2000). https://doi.org/10.1145/335191.335388

    Article  Google Scholar 

  7. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. 41(3), 15:1–15:58 (2009). https://doi.org/10.1145/1541880.1541882

  8. Gebski, M., Wong, R.K.: An efficient histogram method for outlier detection. In: Kotagiri, R., Krishna, P.R., Mohania, M., Nantajeewarawat, E. (eds.) DASFAA 2007. LNCS, vol. 4443, pp. 176–187. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71703-4_17

    Chapter  Google Scholar 

  9. Goldstein, M., Dengel, A.: Histogram-based outlier score (HBOS): a fast unsupervised anomaly detection algorithm. KI-2012: Poster and Demo Track, pp. 59–63 (2012)

    Google Scholar 

  10. Grubbs, F.E.: Procedures for detecting outlying observations in samples. Technometrics 11(1), 1–21 (1969). https://doi.org/10.1080/00401706.1969.10490657

    Article  Google Scholar 

  11. Hand, D.J., Till, R.J.: A simple generalisation of the area under the roc curve for multiple class classification problems. Mach. Learn. 45(2), 171–186 (2001)

    Article  Google Scholar 

  12. Hawkins, D.M.: Introduction. In: Hawkins, D.M. (ed.) Identification of Outliers, vol. 11, pp. 1–12. Springer, Dordrecht (1980). https://doi.org/10.1007/978-94-015-3994-4_1

    Chapter  MATH  Google Scholar 

  13. Hodge, V., Austin, J.: A survey of outlier detection methodologies. Artif. Intell. Rev. 22(2), 85–126 (2004). https://doi.org/10.1023/B:AIRE.0000045502.10941.a9

    Article  MATH  Google Scholar 

  14. Ismail Fawaz, H., Forestier, G., Weber, J., Idoumghar, L., Muller, P.A.: Deep learning for time series classification: a review. Data Min. Knowl. Disc. 33(4), 917–963 (2019)

    Article  MathSciNet  Google Scholar 

  15. Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation forest. In: 2008 Eighth IEEE International Conference on Data Mining, pp. 413–422 (2008). https://doi.org/10.1109/ICDM.2008.17

  16. Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation-based anomaly detection. ACM Trans. Knowl. Discov. Data 6(1), 3:1–3:39 (2012). https://doi.org/10.1145/2133360.2133363

  17. Ramaswamy, S., Rastogi, R., Shim, K.: Efficient algorithms for mining outliers from large data sets. SIGMOD Rec. 29(2), 427–438 (2000). https://doi.org/10.1145/335191.335437

    Article  Google Scholar 

  18. Rayana, S.: ODDS library (2016). http://odds.cs.stonybrook.edu

  19. Samariya, D., Thakkar, A.: A comprehensive survey of anomaly detection algorithms. Ann. Data Sci. (2021). https://doi.org/10.1007/s40745-021-00362-9

  20. Sugiyama, M., Borgwardt, K.: Rapid distance-based outlier detection via sampling. In: Burges, C.J.C., Bottou, L., Welling, M., Ghahramani, Z., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 26, pp. 467–475. Curran Associates, Inc. (2013). https://proceedings.neurips.cc/paper/2013/file/d296c101daa88a51f6ca8cfc1ac79b50-Paper.pdf

  21. Xie, M., Hu, J., Tian, B.: Histogram-based online anomaly detection in hierarchical wireless sensor networks. In: 2012 IEEE 11th International Conference on Trust, Security and Privacy in Computing and Communications, pp. 751–759. IEEE (2012)

    Google Scholar 

  22. Zhao, Y., Nasrullah, Z., Li, Z.: PyOD: a python toolbox for scalable outlier detection. J. Mach. Learn. Res. 20(96), 1–7 (2019). http://jmlr.org/papers/v20/19-011.html

Download references

Acknowledgments

This work is supported by Federation University Research Priority Area (RPA) scholarship, awarded to Durgesh Samariya.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Durgesh Samariya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Samariya, D., Ma, J. (2022). Anomaly Detection on Health Data. In: Traina, A., Wang, H., Zhang, Y., Siuly, S., Zhou, R., Chen, L. (eds) Health Information Science. HIS 2022. Lecture Notes in Computer Science, vol 13705. Springer, Cham. https://doi.org/10.1007/978-3-031-20627-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20627-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20626-9

  • Online ISBN: 978-3-031-20627-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics