Abstract
The identification of anomalous records in medical data is an important problem with numerous applications such as detecting anomalous reading, anomalous patient health condition, health insurance fraud detection and fault detection in mechanical components. This paper compares the performances of seven state-of-the-art anomaly detection algorithms to do detect anomalies in healthcare data. Our experimental results in six datasets show that the state-of-the-art method of isolation based method iForest has a better performance overall in terms of AUC and runtime.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Amer, M., Goldstein, M.: Nearest-neighbor and clustering based anomaly detection algorithms for rapidminer. In: Proceedings of the 3rd RapidMiner Community Meeting and Conference (RCOMM 2012), pp. 1–12 (2012)
Angiulli, F., Pizzuti, C.: Fast outlier detection in high dimensional spaces. In: Elomaa, T., Mannila, H., Toivonen, H. (eds.) PKDD 2002. LNCS, vol. 2431, pp. 15–27. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45681-3_2
Aryal, S., Ting, K.M., Haffari, G.: Revisiting attribute independence assumption in probabilistic unsupervised anomaly detection. In: Chau, M., Wang, G.A., Chen, H. (eds.) PAISI 2016. LNCS, vol. 9650, pp. 73–86. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31863-9_6
Bandaragoda, T.R., Ting, K.M., Albrecht, D., Liu, F.T., Wells, J.R.: Efficient anomaly detection by isolation using nearest neighbour ensemble. In: 2014 IEEE International Conference on Data Mining Workshop, pp. 698–705 (2014). https://doi.org/10.1109/ICDMW.2014.70
Bandaragoda, T.R., Ting, K.M., Albrecht, D., Liu, F.T., Zhu, Y., Wells, J.R.: Isolation-based anomaly detection using nearest-neighbor ensembles. Comput. Intell. 1–31 (2017). https://doi.org/10.1111/coin.12156
Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: LOF: identifying density-based local outliers. SIGMOD Rec. 29(2), 93–104 (2000). https://doi.org/10.1145/335191.335388
Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. 41(3), 15:1–15:58 (2009). https://doi.org/10.1145/1541880.1541882
Gebski, M., Wong, R.K.: An efficient histogram method for outlier detection. In: Kotagiri, R., Krishna, P.R., Mohania, M., Nantajeewarawat, E. (eds.) DASFAA 2007. LNCS, vol. 4443, pp. 176–187. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71703-4_17
Goldstein, M., Dengel, A.: Histogram-based outlier score (HBOS): a fast unsupervised anomaly detection algorithm. KI-2012: Poster and Demo Track, pp. 59–63 (2012)
Grubbs, F.E.: Procedures for detecting outlying observations in samples. Technometrics 11(1), 1–21 (1969). https://doi.org/10.1080/00401706.1969.10490657
Hand, D.J., Till, R.J.: A simple generalisation of the area under the roc curve for multiple class classification problems. Mach. Learn. 45(2), 171–186 (2001)
Hawkins, D.M.: Introduction. In: Hawkins, D.M. (ed.) Identification of Outliers, vol. 11, pp. 1–12. Springer, Dordrecht (1980). https://doi.org/10.1007/978-94-015-3994-4_1
Hodge, V., Austin, J.: A survey of outlier detection methodologies. Artif. Intell. Rev. 22(2), 85–126 (2004). https://doi.org/10.1023/B:AIRE.0000045502.10941.a9
Ismail Fawaz, H., Forestier, G., Weber, J., Idoumghar, L., Muller, P.A.: Deep learning for time series classification: a review. Data Min. Knowl. Disc. 33(4), 917–963 (2019)
Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation forest. In: 2008 Eighth IEEE International Conference on Data Mining, pp. 413–422 (2008). https://doi.org/10.1109/ICDM.2008.17
Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation-based anomaly detection. ACM Trans. Knowl. Discov. Data 6(1), 3:1–3:39 (2012). https://doi.org/10.1145/2133360.2133363
Ramaswamy, S., Rastogi, R., Shim, K.: Efficient algorithms for mining outliers from large data sets. SIGMOD Rec. 29(2), 427–438 (2000). https://doi.org/10.1145/335191.335437
Rayana, S.: ODDS library (2016). http://odds.cs.stonybrook.edu
Samariya, D., Thakkar, A.: A comprehensive survey of anomaly detection algorithms. Ann. Data Sci. (2021). https://doi.org/10.1007/s40745-021-00362-9
Sugiyama, M., Borgwardt, K.: Rapid distance-based outlier detection via sampling. In: Burges, C.J.C., Bottou, L., Welling, M., Ghahramani, Z., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 26, pp. 467–475. Curran Associates, Inc. (2013). https://proceedings.neurips.cc/paper/2013/file/d296c101daa88a51f6ca8cfc1ac79b50-Paper.pdf
Xie, M., Hu, J., Tian, B.: Histogram-based online anomaly detection in hierarchical wireless sensor networks. In: 2012 IEEE 11th International Conference on Trust, Security and Privacy in Computing and Communications, pp. 751–759. IEEE (2012)
Zhao, Y., Nasrullah, Z., Li, Z.: PyOD: a python toolbox for scalable outlier detection. J. Mach. Learn. Res. 20(96), 1–7 (2019). http://jmlr.org/papers/v20/19-011.html
Acknowledgments
This work is supported by Federation University Research Priority Area (RPA) scholarship, awarded to Durgesh Samariya.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Samariya, D., Ma, J. (2022). Anomaly Detection on Health Data. In: Traina, A., Wang, H., Zhang, Y., Siuly, S., Zhou, R., Chen, L. (eds) Health Information Science. HIS 2022. Lecture Notes in Computer Science, vol 13705. Springer, Cham. https://doi.org/10.1007/978-3-031-20627-6_4
Download citation
DOI: https://doi.org/10.1007/978-3-031-20627-6_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20626-9
Online ISBN: 978-3-031-20627-6
eBook Packages: Computer ScienceComputer Science (R0)