Skip to main content

DRAM-Net: A Deep Residual Alzheimer’s Diseases and Mild Cognitive Impairment Detection Network Using EEG Data

  • Conference paper
  • First Online:
Health Information Science (HIS 2022)

Abstract

Mild Cognitive Impairment (MCI) and Alzheimer’s diseases (AD) are two common neurodegenerative disorders which belong to the dementia family mostly found in elders. There is evidence that MCI may lead to Alzheimer’s disease. Since there is no treatment for AD after it has been diagnosed, it is a significant public health problem in the twenty-first century. Existing classical machine learning methods fail to detect AD and MCI more efficiently and accurately because of their shallow and limited architecture. Electroencephalography (EEG) is emerging as a portable, non-invasive, and cheap diagnostic tool to analyze MCI and AD, whereas other diagnostic tools like computed tomography, positron emission tomography, mini-mental state examination, and magnetic resonance imaging are expensive and time-consuming. To address these obstacles, a deep residual Alzheimer’s disease and MCI detection network (DRAM-Net) based framework has been introduced to detect MCI and AD using EEG data. This multi-class study contains EEG data collection, preprocessing (down-sampling, de-noising and temporal segmentation), DRAM-Net architecture to classify AD, MCI and normal subjects and experiment evaluation stages. Our proposed DRAM-Net framework has obtained 96.26% overall multiclass accuracy, outperforming existing multi-class studies, and also claimed accuracy of 96.66% for the normal class, 98.06% for the MCI class, and 97.79% for the AD class. This study will create a new pathway for future neuro-disease researchers and technology experts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alvi, A.M., Siuly, S., Wang, H., Wang, K., Whittaker, F.: A deep learning based framework for diagnosis of mild cognitive impairment. Knowl.-Based Syst. 248, 108815 (2022)

    Article  Google Scholar 

  2. Pirrone, D., Weitschek, E., Di Paolo, P., De Salvo, S., De Cola, M.C.: EEG signal processing and supervised machine learning to early diagnose Alzheimer’s disease. Appl. Sci. 12(11), 5413 (2022)

    Article  Google Scholar 

  3. Patterson, C.: World Alzheimer report 2018. The state of the art of dementia research: new frontiers. Alzheimer’s Disease International, London (2018)

    Google Scholar 

  4. Organization, W.H., et al.: Alzheimer’s disease international. Dementia: a public health priority. World Health Org. 1, 112 (2012)

    Google Scholar 

  5. Bracco, L., et al.: Factors affecting course and survival in Alzheimer’s disease: a 9-year longitudinal study. Arch. Neurol. 51(12), 1213–1219 (1994)

    Article  Google Scholar 

  6. Alvi, A.M., Shaon, M.F.I., Das, P.R., Mustafa, M., Bari, M.R.: Automated course management system. In: 2017 12th International Conference for Internet Technology and Secured Transactions (ICITST), pp. 161–166. IEEE, December 2017

    Google Scholar 

  7. Morabito, F.C., Ieracitano, C., Mammone, N.: An explainable Artificial Intelligence approach to study MCI to AD conversion via HD-EEG processing. Clin. EEG Neurosci. (2021). https://doi.org/10.1177/15500594211063662

  8. Alvi, A., Tasneem, N., Hasan, A., Akther, S.: Impacts of blockades and strikes in Dhaka: a survey. Int. J. Innov. Bus. Strat. 6(1), 369–377 (2020)

    Article  Google Scholar 

  9. Ieracitano, C., Mammone, N., Hussain, A., Morabito, F.C.: A novel multi-modal machine learning based approach for automatic classification of EEG recordings in dementia. Neural Netw. 123, 176–190 (2020)

    Article  Google Scholar 

  10. Fiscon, G., et al.: Combining EEG signal processing with supervised methods for Alzheimer’s patients classification. BMC Med. Inform. Decis. Making 18(1), 1–10 (2018)

    Article  Google Scholar 

  11. Alvi, A.M., Siuly, S., Wang, H.: A long short-term memory based framework for early detection of mild cognitive impairment from EEG signals. IEEE Trans. Emerg. Top. Comput. Intell. (2022)

    Google Scholar 

  12. Alvi, A.M., Siuly, S., Wang, H.: Neurological abnormality detection from electroencephalography data: a review. Artif. Intell. Rev. 55(3), 2275–2312 (2021). https://doi.org/10.1007/s10462-021-10062-8

    Article  Google Scholar 

  13. Alvi, A.M., Siuly, S., Wang, H., Sun, L., Cao, J.: An adaptive image smoothing technique based on localization. In: Developments of Artificial Intelligence Technologies in Computation and Robotics: Proceedings of the 14th International FLINS Conference (FLINS 2020), pp. 866–873 (2020)

    Google Scholar 

  14. Chatterjee, C.C., Krishna, G.: A novel method for IDC prediction in breast cancer histopathology images using deep residual neural networks. In: 2019 2nd International Conference on Intelligent Communication and Computational Techniques (ICCT), pp. 95–100. IEEE, September 2019

    Google Scholar 

  15. Alvi, A.M., Siuly, S., Wang, H.: Developing a deep learning based approach for anomalies detection from EEG data. In: Zhang, W., Zou, L., Zakaria Maamar, Lu., Chen, (eds.) WISE 2021. LNCS, vol. 13080, pp. 591–602. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90888-1_45

    Chapter  Google Scholar 

  16. Paul, S., Alvi, A.M., Nirjhor, M.A., Rahman, S., Orcho, A.K., Rahman, R.M.: Analyzing accident prone regions by clustering. In: Król, D., Nguyen, N.T., Shirai, K. (eds.) ACIIDS 2017. SCI, vol. 710, pp. 3–13. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56660-3_1

    Chapter  Google Scholar 

  17. Alvi, A.M., Basher, S.F., Himel, A.H., Sikder, T., Islam, M., Rahman, R.M.: An adaptive grayscale image de-noising technique by fuzzy inference system. In: 2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), pp. 1301–1308. IEEE, July 2017

    Google Scholar 

  18. Paul, S., Alvi, A.M., Rahman, R.M.: An analysis of the most accident prone regions within the Dhaka Metropolitan Region using clustering. Int. J. Adv. Intell. Paradigms 18(3), 294–315 (2021)

    Article  Google Scholar 

  19. Helzner, E.P., Scarmeas, N., Cosentino, S., Tang, M., Schupf, N., Stern, Y.: Survival in Alzheimer disease: a multiethnic, population-based study of incident cases. Neurology 71(19), 1489–1495 (2008)

    Article  Google Scholar 

  20. Alvi, A.M., Tasneem, N., Hasan, M.A., Akther, S.B.: A study to find the impacts of strikes on students and local shopkeepers in Bangladesh. In: World Congress on Sustainable Technologies (WCST-2019) (2019)

    Google Scholar 

  21. Hasan, M.A., Tasneem, N., Akther, S.B., Das, K., Alvi, A.M.: An analysis on recent mobile application trend in Bangladesh. In: Barolli, L., Takizawa, M., Xhafa, F., Enokido, T. (eds.) WAINA 2019. AISC, vol. 927, pp. 195–204. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-15035-8_18

    Chapter  Google Scholar 

  22. Fouladi, S., Safaei, A.A., Mammone, N., Ghaderi, F., Ebadi, M.J.: Efficient deep neural networks for classification of Alzheimer’s disease and mild cognitive impairment from scalp EEG recordings. Cogn. Comput. 14, 1247–1268 (2022). https://doi.org/10.1007/s12559-022-10033-3

    Article  Google Scholar 

  23. Alvi, A.M., Siuly, S., Wang, H.: Challenges in electroencephalography data processing using machine learning approaches. In: Hua, W., Wang, H., Li, L. (eds.) Databases Theory and Applications: 33rd Australasian Database Conference, ADC 2022, Sydney, NSW, Australia, September 2–4, 2022, Proceedings, pp. 177–184. Springer International Publishing, Cham (2022). https://doi.org/10.1007/978-3-031-15512-3_15

    Chapter  Google Scholar 

  24. Vimalachandran, P., Liu, H., Lin, Y., Ji, K., Wang, H., Zhang, Y.: Improving accessibility of the Australian My Health Records while preserving privacy and security of the system. Health Inf. Sci. Syst. 8(1), 1–9 (2020). https://doi.org/10.1007/s13755-020-00126-4

    Article  Google Scholar 

  25. He, J., Rong, J., Sun, L., Wang, H., Zhang, Y., Ma, J.: A framework for cardiac arrhythmia detection from IoT-based ECGs. World Wide Web 23(5), 2835–2850 (2020). https://doi.org/10.1007/s11280-019-00776-9

    Article  Google Scholar 

  26. Lee, J., Park, J.S., Wang, K.N., Feng, B., Tennant, M., Kruger, E.: The use of telehealth during the coronavirus (COVID-19) pandemic in oral and maxillofacial surgery–a qualitative analysis. EAI Endorsed Trans. Scalable Inf. Syst. 9(4), e10 (2022)

    Google Scholar 

  27. Pandey, D., Wang, H., Yin, X., Wang, K., Zhang, Y., Shen, J.: Automatic breast lesion segmentation in phase preserved DCE-MRIs. Health Inf. Sci. Syst. 10(1), 1–19 (2022). https://doi.org/10.1007/s13755-022-00176-w

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashik Mostafa Alvi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alvi, A.M., Siuly, S., De Cola, M.C., Wang, H. (2022). DRAM-Net: A Deep Residual Alzheimer’s Diseases and Mild Cognitive Impairment Detection Network Using EEG Data. In: Traina, A., Wang, H., Zhang, Y., Siuly, S., Zhou, R., Chen, L. (eds) Health Information Science. HIS 2022. Lecture Notes in Computer Science, vol 13705. Springer, Cham. https://doi.org/10.1007/978-3-031-20627-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20627-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20626-9

  • Online ISBN: 978-3-031-20627-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics