Skip to main content

HGCL: Heterogeneous Graph Contrastive Learning for Traditional Chinese Medicine Prescription Generation

  • Conference paper
  • First Online:
Health Information Science (HIS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13705))

Included in the following conference series:

  • 1002 Accesses

Abstract

Traditional Chinese Medicine (TCM) is a highly empirical, subjective and practical discipline. Generating an appropriate prescription has been one of the most crucial components in building intelligent diagnosis systems that provide clinical decision support to physicians. While various machine learning models for prescription generation have been created, they suffer from specific limitations (e.g., data complexity and semantic ambiguity, lack of syndrome differentiation thinking, etc.). For handling these limitations, we propose a novel Heterogeneous Graph Contrastive Learning (HGCL) based model to conduct prescription generation with the idea of syndrome differentiation and treatment. Specifically, we first model the TCM clinical prescriptions as a Heterogeneous Information Network (THIN), and then explore node- and semantic-level contrastive learning on THIN, so as to enhance the quality of node representations for several downstream tasks such as node classification, prescription generation, etc. We conduct extensive experiments on three real TCM clinical datasets, demonstrating significant improvement over state-of-the-art methods, even though some of which are fully unsupervised.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597–1607. PMLR (2020)

    Google Scholar 

  2. Chen, X., Ruan, C., Zhang, Y., Chen, H.: Heterogeneous information network based clustering for categorizations of traditional Chinese medicine formula. In: BIBM, pp. 839–846. IEEE (2018)

    Google Scholar 

  3. Guo, L., Wang, Y.Y.: Study thoughts on complex phenomena in syndrome of Chinese medicine. Chin. J. Basic Med. Tradit. Chin. Med. 10(2), 3–12 (2004)

    Google Scholar 

  4. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: CVPR, pp. 9729–9738 (2020)

    Google Scholar 

  5. Hjelm, R.D., et al.: Learning deep representations by mutual information estimation and maximization. arXiv preprint arXiv:1808.06670 (2018)

  6. Hu, Z., Dong, Y., Wang, K., Sun, Y.: Heterogeneous graph transformer. In: 2020 Proceedings of The Web Conference, pp. 2704–2710 (2020)

    Google Scholar 

  7. Jiang, M., et al.: Syndrome differentiation in modern research of traditional Chinese medicine. J. Ethnopharmacol. 140(3), 634–642 (2012)

    Article  Google Scholar 

  8. Jin, Y., Zhang, W., He, X., Wang, X., Wang, X.: Syndrome-aware herb recommendation with multi-graph convolution network. In: ICDE, pp. 145–156. IEEE (2020)

    Google Scholar 

  9. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: 5th ICLR (2017). arXiv preprint arXiv:1609.02907

  10. Lee, D., Xu, H., Liu, H., Miao, Y.: Cognitive modelling of Chinese herbal medicine’s effect on breast cancer. Health Inf. Sci. Syst. 7(1) (2019). Article number: 20. https://doi.org/10.1007/s13755-019-0083-3

  11. Li, C., et al.: Herb-know: knowledge enhanced prescription generation for traditional Chinese medicine. In: BIBM, pp. 1560–1567. IEEE (2020)

    Google Scholar 

  12. van den Oord, A., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018)

  13. Park, C., Kim, D., Han, J., Yu, H.: Unsupervised attributed multiplex network embedding. In: AAAI, vol. 34, pp. 5371–5378 (2020)

    Google Scholar 

  14. Ruan, C., Ma, J., Wang, Y., Zhang, Y., Yang, Y., Kraus, S.: Discovering regularities from traditional Chinese medicine prescriptions via bipartite embedding model. In: IJCAI, pp. 3346–3352 (2019)

    Google Scholar 

  15. Ruan, C., Wang, Y., Zhang, Y., Yang, Y.: Exploring regularity in traditional Chinese medicine clinical data using heterogeneous weighted networks embedding. In: Li, G., Yang, J., Gama, J., Natwichai, J., Tong, Y. (eds.) DASFAA 2019. LNCS, vol. 11448, pp. 310–313. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-18590-9_35

    Chapter  Google Scholar 

  16. Shi, C., Li, Y., Zhang, J., Sun, Y., Philip, S.Y.: A survey of heterogeneous information network analysis. IEEE Trans. Knowl. Data Eng. 29(1), 17–37 (2016)

    Article  Google Scholar 

  17. Sun, F.Y., Hoffmann, J., Verma, V., Tang, J.: InfoGraph: unsupervised and semi-supervised graph-level representation learning via mutual information maximization. arXiv preprint arXiv:1908.01000 (2019)

  18. Vaswani, A., et al.: Attention is all you need. In: NeurIPS, pp. 5998–6008 (2017)

    Google Scholar 

  19. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. arXiv preprint arXiv:1710.10903 (2017)

  20. Velickovic, P., Fedus, W., Hamilton, W.L., Liò, P., Bengio, Y., Hjelm, R.D.: Deep graph infomax. In: ICLR (Poster) (2019)

    Google Scholar 

  21. Wan, H., et al.: Extracting relations from traditional Chinese medicine literature via heterogeneous entity networks. JAMIA 23(2), 356–365 (2016)

    Google Scholar 

  22. Wang, T., Isola, P.: Understanding contrastive representation learning through alignment and uniformity on the hypersphere. In: ICML, pp. 9929–9939. PMLR (2020)

    Google Scholar 

  23. Wang, Z., Poon, J., Poon, S.: TCM translator: a sequence generation approach for prescribing herbal medicines. In: BIBM, pp. 2474–2480. IEEE (2019)

    Google Scholar 

  24. Wu, Y., et al.: A hybrid-scales graph contrastive learning framework for discovering regularities in traditional Chinese medicine formula. In: BIBM, pp. 1104–1111 (2021)

    Google Scholar 

  25. Wu, Z., et al.: Unsupervised feature learning via non-parametric instance discrimination. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3733–3742 (2018)

    Google Scholar 

  26. Yao, L., et al.: Discovering treatment pattern in traditional Chinese medicine clinical cases by exploiting supervised topic model and domain knowledge. J. Biomed. Inform. 58, 260–267 (2015)

    Article  Google Scholar 

  27. Yao, L., Zhang, Y., Wei, B., Zhang, W., Jin, Z.: A topic modeling approach for traditional Chinese medicine prescriptions. IEEE Trans. Knowl. Data Eng. 30(6), 1007–1021 (2018)

    Article  Google Scholar 

  28. Zhu, Y., Xu, Y., Liu, Q., Wu, S.: An empirical study of graph contrastive learning (2021). https://doi.org/10.48550/ARXIV.2109.01116. arXiv:2109.01116

  29. Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Deep graph contrastive representation learning. arXiv preprint arXiv:2006.04131 (2020)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zecheng Yin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yin, Z., Wu, Y., Zhang, Y. (2022). HGCL: Heterogeneous Graph Contrastive Learning for Traditional Chinese Medicine Prescription Generation. In: Traina, A., Wang, H., Zhang, Y., Siuly, S., Zhou, R., Chen, L. (eds) Health Information Science. HIS 2022. Lecture Notes in Computer Science, vol 13705. Springer, Cham. https://doi.org/10.1007/978-3-031-20627-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20627-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20626-9

  • Online ISBN: 978-3-031-20627-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics