Skip to main content

Towards Interpretable Machine Learning Models to Aid the Academic Performance of Children and Adolescents with Attention-Deficit/Hyperactivity Disorder

  • Conference paper
  • First Online:
Biomedical Engineering Systems and Technologies (BIOSTEC 2021)

Abstract

Educational Data Mining (EDM) integrates numerous auxiliary techniques in capturing, processing, and analyzing school data, with the aim of monitoring and evaluating the process of acquiring knowledge. This assessment and closer monitoring of the student can positively help the learning of students with Attention Deficit Hyperactivity Disorder (ADHD), as they are more likely to have school difficulties, especially in the basic subjects: arithmetic, writing, and reading. Therefore, this work, which is an extension of the article by Jandre et al., seeks to complement the prediction of the results found with the VTJ48 and JRip algorithms that lead to high or low performance of de students whit ADHD in the three basic disciplines, adding the analysis of Random Forest, SVM, and ANN models, in addition to the application of the SHAP method to explain the output of the best model obtained, in case it is not explicitly interpretable. With the results obtained, it can be seen that the best prediction for the arithmetic discipline was performed by Random Forest and SVM (tied); in writing it was the ANN; and in reading it was the VTJ48. In addition, among the features that lead students with ADHD to have a high or low school performance are factors related to parental behavior, student gender, mother’s education level, and family financial situation, among others.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    WEKA is open source software issued under the GNU General Public License that contains a collection of ML algorithms [13]. Available at http://www.cs.waikato.ac.nz/ml/weka.

  2. 2.

    Available in the WEKA tool.

  3. 3.

    \(Precision = \frac{VP}{VP + FP}\).

  4. 4.

    \(Recall = \frac{VP}{VP + FN}\).

  5. 5.

    \(F-Measure = \frac{2 \times Recall \times Precision}{Recall + Precision}\).

References

  1. Abdul, A., Vermeulen, J., Wang, D., Lim, B.Y., Kankanhalli, M.: Trends and trajectories for explainable, accountable and intelligible systems: an HCI research agenda. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–18. Association for Computing Machinery, New York (2018). https://doi.org/10.1145/3173574.3174156

  2. Ahmed, A., Elaraby, I.S.: Data mining: a prediction for student’s performance using classification method. World J. Comput. Appl. Technol. 2(2), 43–47 (2014)

    Article  Google Scholar 

  3. Anuradha, J., Tisha, Ramachandran, V., Arulalan, K.V., Tripathy, B.K.: Diagnosis of ADHD using SVM algorithm. In: Proceedings of the Third Annual ACM Bangalore Conference, COMPUTE 2010, Association for Computing Machinery, New York (2010)

    Google Scholar 

  4. Araújo, A.P.d.Q.C.: Avaliação e manejo de criança com dificuldade escolar e distúrbio de atenção. Jornal de Pediatria 78, S104–S110 (2002)

    Google Scholar 

  5. American Psychological Association et al.: DSM-5: Manual diagnóstico e estatístico de transtornos mentais. Artmed Editora (2014)

    Google Scholar 

  6. Brownlee, J.: How to use ensemble machine learning algorithms in Weka (2016). https://machinelearningmastery.com/use-ensemble-machine-learning-algorithms-weka/. Accessed 08 Apr 2022

  7. Cardoso, L., Mollica, A.M.V., Sales, A.M., Araújo, L.C.: O lúdico e a aprendizagem de crianças com transtorno de déficit de atenção/hiperatividade. Revista Científica FAGOC-Multidisciplinar 3(2) (2019)

    Google Scholar 

  8. Carvalho, M.P.d.: Por que tantos meninos vão mal na escola? critérios de avaliação escolar segundo o sexo. Cadernos de Pesquisa (2007)

    Google Scholar 

  9. Cohen, W.W.: Fast effective rule induction. In: Twelfth International Conference on Machine Learning, pp. 115–123. Morgan Kaufmann (1995)

    Google Scholar 

  10. Cortez, M.T., Pinheiro, Â.M.V.: TDAH e escola: incompatibilidade? Paidéia 13(19) (2018)

    Google Scholar 

  11. Fortin, F.A., De Rainville, F.M., Gardner, M.A.G., Parizeau, M., Gagné, C.: Deap: evolutionary algorithms made easy. J. Mach. Learn. Res. 13(1), 2171–2175 (2012)

    MathSciNet  Google Scholar 

  12. Frazier, T.W., Youngstrom, E.A., Glutting, J.J., Watkins, M.W.: ADHD and achievement: meta-analysis of the child, adolescent, and adult literatures and a concomitant study with college students. J. Learn. Disabil. 40(1), 49–65 (2007)

    Article  Google Scholar 

  13. Garner, S.: Weka: the Waikato environment for knowledge analysis. In: Proceedings of the New Zealand Computer Science Research Students Conference (1995)

    Google Scholar 

  14. Goldberg, D.E.: Genetic algorithms in search. In: Optimization, and Machine Learning (1989)

    Google Scholar 

  15. Haupt, R.L., Haupt, S.E.: Practical Genetic Algorithms. Wiley, Hoboken (2004)

    MATH  Google Scholar 

  16. He, W.: Examining students’ online interaction in a live video streaming environment using data mining and text mining. Comput. Hum. Behav. 29(1), 90–102 (2013). https://doi.org/10.1016/j.chb.2012.07.020. Including Special Section Youth, Internet, and Wellbeing

  17. Hearst, M.A., Dumais, S.T., Osuna, E., Platt, J., Scholkopf, B.: Support vector machines. IEEE Intell. Syst. Appl. 13(4), 18–28 (1998)

    Article  Google Scholar 

  18. Holland, J.: Adaptation in natural and artificial systems: an introductory analysis with application to biology. Control Artif. Intell. (1975)

    Google Scholar 

  19. Jandre, C., Santos, B.C., Balbino, M., de Miranda, D., Zárate, L.E., Nobre, C.: Analysis of school performance of children and adolescents with attention-deficit/hyperactivity disorder: a dimensionality reduction approach. In: HEALTHINF, pp. 155–165 (2021)

    Google Scholar 

  20. Kaur, H., Nori, H., Jenkins, S., Caruana, R., Wallach, H., Wortman Vaughan, J.: Interpreting interpretability: understanding data scientists’ use of interpretability tools for machine learning. In: Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, pp. 1–14 (2020)

    Google Scholar 

  21. Kohavi, R.: Wrappers for performance enhancement and oblivious decision graphs. Ph.D. thesis, Stanford University, Department of Computer Science, Stanford University (1995)

    Google Scholar 

  22. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence, IJCAI 1995, vol. 2, pp. 1137–1143. Morgan Kaufmann Publishers Inc., San Francisco (1995)

    Google Scholar 

  23. Koltermann, G.: Sintomas de TDAH, desempenho neurocognitivo e nível socioeconômico em crianças de \(3^\circ \) e \(4^\circ \) anos do ensino fundamental. Mestrado em psicologia, Universidade Federal do Rio Grande do Sul, Porto Alegre (2018)

    Google Scholar 

  24. de Lacerda, E.G., de Carvalho, A.: Introdução aos algoritmos genéticos. Sistemas inteligentes: aplicaçoes a recursos hıdricos e ciências ambientais 1, 99–148 (1999)

    Google Scholar 

  25. Larroca, L.M., Domingos, N.M.: TDAH-investigação dos critérios para diagnóstico do subtipo predominantemente desatento. Psicologia Escolar e Educacional 16(1), 113–123 (2012)

    Article  Google Scholar 

  26. de Lima, C.B., Coelho, C.L.M.: Transtorno de déficit de atenção/hiperatividade-um olhar sob a perspectiva da educação especial inclusiva. Cadernos de Pesquisa em Educação 20(47), 172–192 (2018)

    Article  Google Scholar 

  27. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems, vol. 30, pp. 4765–4774. Curran Associates, Inc. (2017)

    Google Scholar 

  28. Mokhtari, K.E., Higdon, B.P., Başar, A.: Interpreting financial time series with SHAP values. In: Proceedings of the 29th Annual International Conference on Computer Science and Software Engineering, CASCON 2019, pp. 166–172. IBM Corporation (2019)

    Google Scholar 

  29. Moreira, S.C., Barreto, M.A.M.: Transtorno de déficit de atenção e hiperatividade: conhecendo para intervir. Revista Práxis 1(2) (2017)

    Google Scholar 

  30. de Pádua Braga, A., de Leon Ferreira, A.C.P., Ludermir, T.B.: Redes neurais artificiais: teoria e aplicações. LTC Editora, Rio de Janeiro (2007)

    Google Scholar 

  31. Pappa, G.L., Freitas, A.A., Kaestner, C.A.: A multiobjective genetic algorithm for attribute selection. In: Proceedings of the 4th International Conference on Recent Advances in Soft Computing (RASC 2002), pp. 116–121. Nottingham Trent University, Nottingham (2002)

    Google Scholar 

  32. Phelan, T.: TDA/TDAH - Transtorno de Déficit de Atenção e Hiperatividade - Sintomas, Diagnósticos e Tratamentos: Crianćas e Adultos. M. Books, São Paulo (2004)

    Google Scholar 

  33. Pongwilairat, K., Louthrenoo, O., Charnsil, C., Witoonchart, C., et al.: Quality of life of children with attention-deficit/hyper activity disorder. J. Med. Assoc. Thai. 88(8), 1062–1066 (2005)

    Google Scholar 

  34. Quinlan, R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, San Mateo (1993)

    Google Scholar 

  35. Rahadian, B.A., Dewi, C., Rahayudi, B.: The performance of genetic algorithm learning vector quantization 2 neural network on identification of the types of attention deficit hyperactivity disorder. In: 2017 International Conference on Sustainable Information Engineering and Technology (SIET), pp. 337–341 (2017)

    Google Scholar 

  36. Rangel Júnior, É.d.B., Loos, H.: Escola e desenvolvimento psicossocial segundo percepções de jovens com tdah. Paidéia 21(50), 373–382 (2011)

    Google Scholar 

  37. da Rocha Antony, S.M.: Os ajustamentos criativos da criança em sofrimento: uma compreensão da gestalt-terapia sobre as principais psicopatologias da infância. Estudos e pesquisas em Psicologia 9(2), 356–375 (2009)

    Google Scholar 

  38. Rudin, C.: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 1(5), 206–215 (2019)

    Article  Google Scholar 

  39. Souza, V.F., dos Santos, T.C.B.: Processo de mineração de dados educacionais aplicado na previsão do desempenho de alunos: Uma comparação entre as técnicas de aprendizagem de máquina e aprendizagem profunda. Revista Brasileira de Informática na Educação 29, 519–546 (2021)

    Article  Google Scholar 

  40. Stein, L.M.: TDE: teste de desempenho escolar: manual para aplicação e interpretação, pp. 1–17. Casa do Psicólogo, São Paulo (1994)

    Google Scholar 

  41. Stiglic, G., Kocbek, S., Pernek, I., Kokol, P.: Comprehensive decision tree models in bioinformatics. PLoS ONE 7(3), e33812 (2012). https://doi.org/10.1371/journal.pone.0033812

    Article  Google Scholar 

  42. Tjoa, E., Guan, C.: A survey on explainable artificial intelligence (XAI): toward medical XAI. IEEE Trans. Neural Netw. Learn. Syst. 1–21 (2020). https://doi.org/10.1109/TNNLS.2020.3027314

  43. UNESCO Institute for Statistics: International standard classification of education: ISCED 2011. UNESCO Institute for Statistics Montreal, Quebec (2012)

    Google Scholar 

  44. Wandera, H., Marivate, V., Sengeh, M.D.: Predicting national school performance for policy making in South Africa. In: 2019 6th International Conference on Soft Computing Machine Intelligence (ISCMI), pp. 23–28 (2019). https://doi.org/10.1109/ISCMI47871.2019.9004323

Download references

Acknowledgements

This study was financed in part by the Coordination for the Improvement of Higher Education Personnel - Brasil (CAPES) - Finance Code 001. The authors thank the National Council for Scientific and Technological Development of Brazil (CNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico) and the Foundation for Research Support of the Minas Gerais State (FAPEMIG). The work was developed at the Pontifical Catholic University of Minas Gerais, PUC Minas in the Applied Computational Intelligence laboratory - LICAP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline Jandre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jandre, C., Balbino, M., de Miranda, D., Zárate, L., Nobre, C. (2022). Towards Interpretable Machine Learning Models to Aid the Academic Performance of Children and Adolescents with Attention-Deficit/Hyperactivity Disorder. In: Gehin, C., et al. Biomedical Engineering Systems and Technologies. BIOSTEC 2021. Communications in Computer and Information Science, vol 1710. Springer, Cham. https://doi.org/10.1007/978-3-031-20664-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20664-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20663-4

  • Online ISBN: 978-3-031-20664-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics