Skip to main content

DL-Assisted ROP Screening Technique

  • Conference paper
  • First Online:
Biomedical Engineering Systems and Technologies (BIOSTEC 2021)

Abstract

Retinopathy of Prematurity (ROP) is the most common cause of visual impairment among premature babies throughout the world. The consequence of ROP impairment can be minimized by performing suitable screening and treatment. However, due to deficiency of health care resources, many of these premature infants remain unidentified after birth. As a result, ROP-induced visual impairment is much more prevalent in these babies. We propose a robust and intelligent approach based on deep artificial intelligence and computer vision to automatically recognise the optical disk (OD) and retinal blood vessels and categorise the severe severity (Zone-1) of ROP patients in this study. We report empirical evidence using premature infant retina images from a nearby hospital to evaluate and validate the proposed approach. The YOLO-V5 prediction model identifies the OD from premature infants retina images, according to our results. Furthermore, the preterm infants’ fundus images were perfectly segmented by the computer vision-based system, which effectively separated the retinal vessels. Our system is able to obtain an accuracy of 82.5% in the Zone-1 occurrence of ROP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://in.mathworks.com/help/images/ref/adapthisteq.html.

References

  1. Agrawal, R., Kulkarni, S., Walambe, R., Kotecha, K.: Assistive framework for automatic detection of all the zones in retinopathy of prematurity using deep learning. J. Digit. Imaging 34(4), 932–947 (2021)

    Article  Google Scholar 

  2. Attallah, O.: Diarop: automated deep learning-based diagnostic tool for retinopathy of prematurity. Diagnostics 11(11), 2034 (2021)

    Article  Google Scholar 

  3. Badarinath, D., et al.: Study of clinical staging and classification of retinal images for retinopathy of prematurity (ROP) screening. In: 2018 International Joint Conference on Neural Networks (IJCNN), pp. 1–6. IEEE (2018)

    Google Scholar 

  4. Blencowe, H., et al.: Born too soon: the global epidemiology of 15 million preterm births. Reprod. Health 10(1), S2 (2013)

    Article  Google Scholar 

  5. Brown, J.M., et al.: Automated diagnosis of plus disease in retinopathy of prematurity using deep convolutional neural networks. JAMA Ophthalmol. 136(7), 803–810 (2018)

    Article  Google Scholar 

  6. Budai, A., Bock, R., Maier, A., Hornegger, J., Michelson, G.: Robust vessel segmentation in fundus images. Int. J. Biomed. Imaging 2013, 154860 (2013). https://doi.org/10.1155/2013/154860

  7. Chiang, M.F., et al.: International classification of retinopathy of prematurity. Ophthalmology 128(10), e51–e68 (2021)

    Article  Google Scholar 

  8. Ding, A., Chen, Q., Cao, Y., Liu, B.: Retinopathy of prematurity stage diagnosis using object segmentation and convolutional neural networks. arXiv preprint arXiv:2004.01582 (2020)

  9. Dogra, M.R., Katoch, D., Dogra, M.: An update on retinopathy of prematurity (ROP). Indian J. Pediatr. 84(12), 930–936 (2017)

    Article  Google Scholar 

  10. Doi, K.: Computer-aided diagnosis in medical imaging: historical review, current status and future potential. Comput. Med. Imaging Graph. 31(4–5), 198–211 (2007)

    Article  Google Scholar 

  11. Ema, T., Doi, K., Nishikawa, R.M., Jiang, Y., Papaioannou, J.: Image feature analysis and computer-aided diagnosis in mammography: reduction of false-positive clustered microcalcifications using local edge-gradient analysis. Med. Phys. 22(2), 161–169 (1995)

    Article  Google Scholar 

  12. Fraz, M.M., et al.: Blood vessel segmentation methodologies in retinal images-a survey. Comput. Methods Programs Biomed. 108(1), 407–433 (2012)

    Article  Google Scholar 

  13. Gensure, R.H., Chiang, M.F., Campbell, J.P.: Artificial intelligence for retinopathy of prematurity. Curr. Opin. Ophthalmol. 31(5), 312 (2020)

    Article  Google Scholar 

  14. Guo, X., Kikuchi, Y., Wang, G., Yi, J., Zou, Q., Zhou, R.: Early detection of retinopathy of prematurity (ROP) in retinal fundus images via convolutional neural networks. arXiv preprint arXiv:2006.06968 (2020)

  15. Hellström, A., Smith, L.E., Dammann, O.: Retinopathy of prematurity. Lancet 382(9902), 1445–1457 (2013)

    Article  Google Scholar 

  16. Henry, A.G.P., Jude, A.: Convolutional neural-network-based classification of retinal images with different combinations of filtering techniques. Open Comput. Sci. 11(1), 480–490 (2021)

    Article  Google Scholar 

  17. Honavar, S.G.: Do we need India-specific retinopathy of prematurity screening guidelines? Indian J. Ophthalmol. 67(6), 711 (2019)

    Article  Google Scholar 

  18. Hoover, A.D., Kouznetsova, V., Goldbaum, M.: Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans. Med. Imaging 19(3), 203–210 (2000). https://doi.org/10.1109/42.845178

    Article  Google Scholar 

  19. Huang, Y.P., et al.: Deep learning models for automated diagnosis of retinopathy of prematurity in preterm infants. Electronics 9(9), 1444 (2020)

    Article  Google Scholar 

  20. Islam, M., Poly, T.N., Walther, B.A., Yang, H.C., Li, Y.C.J., et al.: Artificial intelligence in ophthalmology: a meta-analysis of deep learning models for retinal vessels segmentation. J. Clin. Med. 9(4), 1018 (2020)

    Article  Google Scholar 

  21. Islam, M.M., Poly, T.N., Li, Y.C.J.: Retinal vessels detection using convolutional neural networks in fundus images. bioRxiv 737668 (2019)

    Google Scholar 

  22. Jefferies, A.L., Society, C.P., Fetus, Committee, N.: Retinopathy of prematurity: an update on screening and management. Paediatr. Health 21(2), 101–104 (2016). https://doi.org/10.1093/pch/21.2.101

  23. Jocher, G., et al.: ultralytics/yolov5: v5.0 - YOLOv5-P6 1280 models, AWS, Supervise.ly and YouTube integrations (2021). https://doi.org/10.5281/zenodo.4679653

  24. Kim, S.J., Port, A.D., Swan, R., Campbell, J.P., Chan, R.P., Chiang, M.F.: Retinopathy of prematurity: a review of risk factors and their clinical significance. Surv. Ophthalmol. 63(5), 618–637 (2018)

    Article  Google Scholar 

  25. Kumar., V., Patel., H., Paul., K., Surve., A., Azad., S., Chawla., R.: Deep learning assisted retinopathy of prematurity screening technique. In: Proceedings of the 14th International Joint Conference on Biomedical Engineering Systems and Technologies - HEALTHINF, pp. 234–243. INSTICC, SciTePress (2021). https://doi.org/10.5220/0010322102340243

  26. Lei, B., et al.: Automated detection of retinopathy of prematurity by deep attention network. Multimed. Tools Appl. 80(30), 36341–36360 (2021)

    Article  Google Scholar 

  27. Luo, Y., Chen, K., Mao, J., Shen, L., Sun, M.: A fusion deep convolutional neural network based on pathological features for diagnosing plus disease in retinopathy of prematurity. Invest. Ophthalmol. Visual Sci. 61(7), 2017–2017 (2020)

    Google Scholar 

  28. Oloumi, F., Rangayyan, R.M., Ells, A.L.: Computer-aided diagnosis of retinopathy of prematurity via analysis of the vascular architecture in retinal fundus images of preterm infants. In: Doctoral Consortium on Computer Vision, Imaging and Computer Graphics Theory and Applications, vol. 2, pp. 58–66. SCITEPRESS (2014)

    Google Scholar 

  29. Oloumi, F., Rangayyan, R.M., Ells, A.L.: Computer-aided diagnosis of retinopathy in retinal fundus images of preterm infants via quantification of vascular tortuosity. J. Med. Imaging 3(4), 044505 (2016)

    Article  Google Scholar 

  30. Organization, W.H., et al.: World report on vision. Technical report, Geneva: World Health Organization (2019)

    Google Scholar 

  31. Peng, Y., Zhu, W., Chen, F., Xiang, D., Chen, X.: Automated retinopathy of prematurity screening using deep neural network with attention mechanism. In: Medical Imaging 2020: Image Processing, vol. 11313, p. 1131321. International Society for Optics and Photonics (2020)

    Google Scholar 

  32. Peng, Y., et al.: Automatic staging for retinopathy of prematurity with deep feature fusion and ordinal classification strategy. IEEE Trans. Med. Imaging (2021)

    Google Scholar 

  33. Ravichandran, C., Raja, J.B.: A fast enhancement/thresholding based blood vessel segmentation for retinal image using contrast limited adaptive histogram equalization. J. Med. Imaging Health Inf. 4(4), 567–575 (2014)

    Article  Google Scholar 

  34. Redd, T.K., et al.: Evaluation of a deep learning image assessment system for detecting severe retinopathy of prematurity. British J. Ophthalmol. 103(5), 580–584 (2019)

    Article  Google Scholar 

  35. Sara, U., Akter, M., Uddin, M.S.: Image quality assessment through FSIM, SSIM, MSE and PSNR-a comparative study. J. Comput. Commun. 7(3), 8–18 (2019)

    Article  Google Scholar 

  36. Scruggs, B.A., Chan, R.P., Kalpathy-Cramer, J., Chiang, M.F., Campbell, J.P.: Artificial intelligence in retinopathy of prematurity diagnosis. Trans. Vision Sci. Technol. 9(2), 5–5 (2020)

    Article  Google Scholar 

  37. Sen, P., Rao, C., Bansal, N.: Retinopathy of prematurity: an update. Sci. J. Med. Vis. Res. Foun. 33(2), 93–6 (2015)

    Google Scholar 

  38. Staal, J., Abramoff, M., Niemeijer, M., Viergever, M., van Ginneken, B.: Ridge based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 23(4), 501–509 (2004)

    Article  Google Scholar 

  39. Tan, Z., Simkin, S., Lai, C., Dai, S.: Deep learning algorithm for automated diagnosis of retinopathy of prematurity plus disease. Trans. Vis. Sci. Technol. 8(6), 23–23 (2019)

    Article  Google Scholar 

  40. Ting, D.S.W., et al.: Artificial intelligence and deep learning in ophthalmology. British J. Ophthalmol. 103(2), 167–175 (2019)

    Article  Google Scholar 

  41. Ting, D.S., et al.: Deep learning in ophthalmology: the technical and clinical considerations. Prog. Retinal Eye Res. (2019)

    Google Scholar 

  42. Tong, Y., Lu, W., Deng, Q.Q., Chen, C., Shen, Y.: Automated identification of retinopathy of prematurity by image-based deep learning. Eye Vis. 7(1), 1–12 (2020)

    Google Scholar 

  43. Vinekar, A., Mangalesh, S., Jayadev, C., Gilbert, C., Dogra, M., Shetty, B.: Impact of expansion of telemedicine screening for retinopathy of prematurity in India. Indian J. Ophthalmol. 65(5), 390 (2017)

    Article  Google Scholar 

  44. Wang, J., et al.: Automated explainable multidimensional deep learning platform of retinal images for retinopathy of prematurity screening. JAMA Netw. Open 4(5), e218758–e218758 (2021)

    Article  Google Scholar 

  45. Wang, J., et al.: Automated retinopathy of prematurity screening using deep neural networks. EBioMedicine 35, 361–368 (2018)

    Article  Google Scholar 

  46. Wang, X., Jiang, X., Ren, J.: Blood vessel segmentation from fundus image by a cascade classification framework. Pattern Recogn. 88, 331–341 (2019)

    Article  Google Scholar 

  47. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004). https://doi.org/10.1109/TIP.2003.819861

    Article  Google Scholar 

  48. Wang, Z., Keane, P.A., Chiang, M., Cheung, C.Y., Wong, T.Y., Ting, D.S.W.: Artificial intelligence and deep learning in ophthalmology. Artif. Intell. Med. 1–34 (2020)

    Google Scholar 

  49. Yavuz, Z., Köse, C.: Blood vessel extraction in color retinal fundus images with enhancement filtering and unsupervised classification. J. Healthc. Eng. 2017, 1–12 (2017). https://doi.org/10.1155/2017/4897258

  50. Yildiz, V.M., et al.: Plus disease in retinopathy of prematurity: convolutional neural network performance using a combined neural network and feature extraction approach. Trans. Vis. Sci. Technol. 9(2), 10–10 (2020)

    Article  Google Scholar 

  51. Zhang, Y., et al.: Development of an automated screening system for retinopathy of prematurity using a deep neural network for wide-angle retinal images. IEEE Access 7, 10232–10241 (2018)

    Article  Google Scholar 

  52. Zhao, Z.Q., Zheng, P., Xu, S.t., Wu, X.: Object detection with deep learning: a review. IEEE Trans. Neural Netw. Learn. Syst. 30(11), 3212–3232 (2019)

    Google Scholar 

Download references

Acknowledgements

We acknowledge key insights received from Prof. P. K. Kalra in discussion that we have done related to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijay Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kumar, V., Patel, H., Azad, S., Paul, K., Surve, A., Chawla, R. (2022). DL-Assisted ROP Screening Technique. In: Gehin, C., et al. Biomedical Engineering Systems and Technologies. BIOSTEC 2021. Communications in Computer and Information Science, vol 1710. Springer, Cham. https://doi.org/10.1007/978-3-031-20664-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20664-1_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20663-4

  • Online ISBN: 978-3-031-20664-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics